The role of HBV cccDNA in occult hepatitis B virus infection.
Cell cycle
HBV cccDNA kinetics
Occult hepatitis B
Regulation mechanism
Therapy
Journal
Molecular and cellular biochemistry
ISSN: 1573-4919
Titre abrégé: Mol Cell Biochem
Pays: Netherlands
ID NLM: 0364456
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
05
10
2022
accepted:
09
01
2023
medline:
26
9
2023
pubmed:
4
2
2023
entrez:
3
2
2023
Statut:
ppublish
Résumé
Occult hepatitis B virus (HBV) infection (OBI) refers to the presence of replication-competent HBV DNA in the liver, with or without HBV DNA in the blood, in individuals who tested negative for HBV surface antigen (HBsAg). In this peculiar phase of HBV infection, the covalently closed circular DNA (cccDNA) is in a low state of replication. Several advances have been made toward clarifying the mechanisms involved in such a suppression of viral activity, which seems to be mainly related to the host's immune control and epigenetic factors. Although the underlying mechanisms describing the genesis of OBI are not completely known, the presence of viral cccDNA, which remains in a low state of replication due to the host's strong immune suppression of HBV replication and gene expression, appears to be the causative factor. Through this review, we have provided an updated account on the role of HBV cccDNA in regulating OBI. We have comprehensively described the HBV cell cycle, cccDNA kinetics, current regulatory mechanisms, and the therapeutic methods of cccDNA in OBI-related diseases.
Identifiants
pubmed: 36735210
doi: 10.1007/s11010-023-04660-z
pii: 10.1007/s11010-023-04660-z
doi:
Substances chimiques
DNA, Circular
0
DNA, Viral
0
Hepatitis B Surface Antigens
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
2297-2307Subventions
Organisme : Anhui Provincial Department of Education's 2020 Anhui Provincial University Cooperation Research and Public Health Collaborative Innovation Project
ID : GXXT-2020-016
Organisme : 2021 Anhui University Postgraduate Scientific Research Project
ID : YJS20210277
Organisme : the Second Hospital of Anhui Medical University
ID : 2019GMY02
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Pisaturo M, Onorato L, Russo A, Chiodini P, Coppola N (2020) An estimation of the prevalence of occult HBV infection in Western Europe and in Northern America: a meta-analysi. J Viral Hepat 27(4):415–427. https://doi.org/10.1111/jvh.13248
doi: 10.1111/jvh.13248
pubmed: 31834645
Wen X, Su H, Wang Y et al (2018) Prevalence and natural course of occult hepatitis B virus infection in residents of two communities of Wuwei City, Gansu Province, China. J Viral Hepat 25(3):281–288. https://doi.org/10.1111/jvh.12805
doi: 10.1111/jvh.12805
pubmed: 29032635
Ghaziasadi A, Fakhari Z, Aghcheli B et al (2020) High prevalence of occult hepatitis B infection (OBI) among healthy children and their parents in Alborz province, Iran; Vertical OBI, myth or truth? Liver Int 40(1):92. https://doi.org/10.1111/liv.14252
doi: 10.1111/liv.14252
pubmed: 31518482
Hu KQ (2002) Occult hepatitis B virus infection and its clinical implications. J Viral Hepat 9(4):243–257. https://doi.org/10.1046/j.1365-2893.2002.00344
doi: 10.1046/j.1365-2893.2002.00344
pubmed: 12081601
Mittal M, Hu KQ (2017) Clinical implications and management of chronic occult hepatitis B virus infection. Curr Hepatol Rep 16(2):90–96. https://doi.org/10.1007/s11901-017-0339-9
doi: 10.1007/s11901-017-0339-9
Lu FM, Liao H, Liu YZ et al (2019) Re⁃recognition of occult hepatitis B virus infection. Chin J Prev Med 53(5):445–449. https://doi.org/10.3760/cma.j.issn.0253-9624
doi: 10.3760/cma.j.issn.0253-9624
Vivekanandan P, Kannangai R, Ray SC et al (2008) Comprehensive genetic and epigenetic analysis of occult hepatitis B from liver tissue samples. Clin Infect Dis 46:1227–1236. https://doi.org/10.1086/529437
doi: 10.1086/529437
pubmed: 18444860
pmcid: 3140175
Shi YH, Zhuang H (2005) Current status of research on occult hepatitis B. Infect Dis Inf 18(3):97–98. https://doi.org/10.3969/j.issn.1007-8134
doi: 10.3969/j.issn.1007-8134
Wang GQ, Si CW (2002) Attention should be paid to the diagnosis of occult hepatitis B. Chin J Intern Med 41(10):649–650
Zhang ZH, Ye J, Yang DL (2008) Research progress on occult hepatitis B virus infection. J Pract Hepatol 11(3):200–202. https://doi.org/10.3969/j.issn.1672-5069.2008.03.026
doi: 10.3969/j.issn.1672-5069.2008.03.026
Yan H, Zhong G, Xu G, Li W et al (2012) Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife 1(1):e00049. https://doi.org/10.7554/eLife.00049
doi: 10.7554/eLife.00049
pubmed: 23150796
pmcid: 3485615
Ni Y, L F A, Mehrle S, et al (2014) Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 146(4):1070–1083. https://doi.org/10.1053/j.gastro.2013.12.024
doi: 10.1053/j.gastro.2013.12.024
pubmed: 24361467
Hayes CN, Zhang Y, Makokha GN et al (2016) Early events in hepatitis B virus infection: from the cell surface to the nucleus. J Gastroenterol Hepatol 31(2):302–329. https://doi.org/10.1053/j.gastro.2013.12.024
doi: 10.1053/j.gastro.2013.12.024
pubmed: 26414381
Li W (2015) The hepatitis B virus receptor. Annu Rev Cell Dev Biol 31:125–147. https://doi.org/10.1146/annurev-cellbio-100814-125241
doi: 10.1146/annurev-cellbio-100814-125241
pubmed: 26436705
Iwamoto M, Saso W, Sugiyama R et al (2019) Epidermal growth factor receptor is a host-entry cofactor triggering hepatitis B virus internalization. Proc Natl Acad Sci U S A 116(17):8487–8492. https://doi.org/10.1073/pnas.1811064116
doi: 10.1073/pnas.1811064116
pubmed: 30952782
pmcid: 6486715
Hu Q, Zhang F, Duan L et al (2020) E-cadherin plays a role in hepatitis B virus entry through affecting glycosylated sodium-taurocholate cotransporting polypeptide distribution. Front Cell Infect Microbiol 10:74. https://doi.org/10.3389/fcimb.2020.00074
doi: 10.3389/fcimb.2020.00074
pubmed: 32175289
pmcid: 7056903
Allweiss L, Volz T, Giersch K et al (2018) Proliferation of primary human hepatocytes and prevention of hepatitis B virus reinfection efficiently deplete nuclear cccDNA in vivo. Gut 67(3):542–552. https://doi.org/10.1136/gutjnl-201-6-312162
doi: 10.1136/gutjnl-201-6-312162
pubmed: 28428345
Herrscher C, Roingeard P, Blanchard E (2020) Hepatitis B virus entry into cells. Cells 9(6):1486. https://doi.org/10.3390/cells9061486
doi: 10.3390/cells9061486
pubmed: 32570893
pmcid: 7349259
Herrscher C, Pastor F, Burlaud-Gaillard J et al (2020) Hepatitis B virus entry into HepG2-NTCP cells requires clathrin-mediated endocytosis. Cell Microbiol 22(8):e13205. https://doi.org/10.1111/cmi.13205
doi: 10.1111/cmi.13205
pubmed: 32216005
Huang HC, Chen CC, Chang WC et al (2012) Entry of hepatitis B virus into immortalized human primary hepatocytes by clathrin-dependent endocytosis. J Virol 86(17):9443–9453. https://doi.org/10.1128/JVI.00873-12
doi: 10.1128/JVI.00873-12
pubmed: 22740403
pmcid: 3416113
Umetsu T, Inoue J, Kogure T et al (2018) Inhibitory effect of silibinin on hepatitis B virus entry. Biochem Biophys Rep 14:20–25. https://doi.org/10.1016/j.bbrep.2018.03.003
doi: 10.1016/j.bbrep.2018.03.003
pubmed: 29872730
pmcid: 5986624
Rivière L, Gerossier L, Ducroux A et al (2015) HBx relieves chromatin-mediated transcriptional repression of hepatitis B viral cccDNA involving SETDB1 histone methyltransferase. J Hepatol 63(5):1093–1102. https://doi.org/10.1016/j.jhep.2015.06.023
doi: 10.1016/j.jhep.2015.06.023
pubmed: 26143443
Tang H, Oishi N, Kaneko S et al (2006) Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci 97(10):977–983. https://doi.org/10.1111/j.1349-7006.2006.00299
doi: 10.1111/j.1349-7006.2006.00299
pubmed: 16984372
Belloni L, Policino T, De Nicola F et al (2009) Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc Natl Acad Sci USA 106(47):19975–19979. https://doi.org/10.1073/pnas.0908365106
doi: 10.1073/pnas.0908365106
pubmed: 19906987
pmcid: 2775998
Guerrieri F, Belloni L, D’Andrea D et al (2017) Genome-wide identification of direct HBx genomic targets. BMC Genomics 18(1):184. https://doi.org/10.1186/s12864-017-3561-5
doi: 10.1186/s12864-017-3561-5
pubmed: 28212627
pmcid: 5316204
Murphy CM, Xu Y, Li F et al (2016) Hepatitis B virus X Protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep 16(11):2846–2854. https://doi.org/10.1016/j.celrep.2016.08.026
doi: 10.1016/j.celrep.2016.08.026
pubmed: 27626656
pmcid: 5078993
Salerno D, Chiodo L, Alfano V et al (2020) Hepatitis B protein HBx binds the DLEU2 lncRNA to sustain cccDNA and host cancer-related gene transcription. Gut 69(11):2016–2024. https://doi.org/10.1136/gutjnl-2019-319637
doi: 10.1136/gutjnl-2019-319637
pubmed: 32114505
Lee H, Jeong H, Lee SY et al (2019) Hepatitis B virus X protein stimulates virus replication via DNA methylation of the C-1619 in covalently closed circular DNA. Mol Cells 42(1):67–78. https://doi.org/10.14348/molcells.2018.0255
doi: 10.14348/molcells.2018.0255
pubmed: 30518174
Guo L, Wang X, Ren L et al (2014) HBx affects CUL4-DDB1 function in both positive and negative manners. Biochem Biophys Res Commun 450(4):1492–1497. https://doi.org/10.1016/j.bbrc.2014.07.019
doi: 10.1016/j.bbrc.2014.07.019
pubmed: 25019988
Sekiba K, Otsuka M, Ohno M et al (2019) Pevonedistat, a neuronal precursor cell-expressed developmentally down-regulated protein 8-activating enzyme inhibitor. Is a potent inhibitor of hepatitis B virus. Hepatology 69(5):1903–1915. https://doi.org/10.1002/hep.30491
doi: 10.1002/hep.30491
pubmed: 30586159
Chong CK, Cheng CYS, Tsoi SYJ et al (2017) Role of hepatitis B core protein in HBV transcription and recruitment of histone acetyltransferases to cccDNA minichromosome. Antivir Res 144:1–7. https://doi.org/10.1016/j.antiviral.2017.05.003
doi: 10.1016/j.antiviral.2017.05.003
pubmed: 28499864
Bock CT, Schiwinn S, Locarnini S et al (2001) Structural organization of the hepatitis B virus minichromosome. J Mol Biol 307(1):183–196. https://doi.org/10.1006/jmbi.2000.4481
doi: 10.1006/jmbi.2000.4481
pubmed: 11243813
Levrero M, Policino T, Petersen J et al (2009) Control of cccDNA function in hepatitis B virus infectio. J Hepatol 51(3):581–592. https://doi.org/10.1016/j.jhep.2009.05.022
doi: 10.1016/j.jhep.2009.05.022
pubmed: 19616338
Guo YH, Li YN, Zhao JR et al (2011) HBc binds to the CpG islands of HBV cccDNA and promotes an epigenetic permissive state. Epigenetics 6(6):720–726. https://doi.org/10.4161/epi.6.6.15815
doi: 10.4161/epi.6.6.15815
pubmed: 21546797
Bock CT, Schranz P, Schröder CH, Zentgraf H (1994) Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell. Virus Genes 8(3):215–229. https://doi.org/10.1007/BF01703079
doi: 10.1007/BF01703079
pubmed: 7975268
Gao L, Mao TH, Peng SW et al (2022) A short half-life of cccDNA offer or ignite hope for hepatitis B cure under nucleos(t)ide analogues treatment. Zhonghua Gan Zang Bing Za Zhi 30(1):99–102. https://doi.org/10.3760/cma.j.cn501113-20200527-00277
doi: 10.3760/cma.j.cn501113-20200527-00277
pubmed: 35152678
Ko C, Chakraborty A, Chou WM et al (2018) Hepatitis B virus genome recycling and de novo secondary infection events maintain stable cccDNA levels. J Hepatol 69(6):1231–1241. https://doi.org/10.1016/j.jhep.2018.08.012
doi: 10.1016/j.jhep.2018.08.012
pubmed: 30142426
pmcid: 7611400
Hong X, Luckenbaugh L, Perlman D, Revill PA, Wieland SF, Menne S, Hu J (2021) Characterization and application of precore/core-related antigens in animal models of hepatitis B virus infection. Hepatology 74(1):99–115. https://doi.org/10.1002/hep.31720
doi: 10.1002/hep.31720
pubmed: 33458844
Addison WR, Walters KA, Wong WW, Wilson JS, Madej D, Jewell LD, Tyrrell DL (2002) Half-life of the duck hepatitis B virus covalently closed circular DNA pool in vivo following inhibition of viral replication. J Virol 76(12):6356–6363. https://doi.org/10.1128/jvi.76.12.6356-6363.2002
doi: 10.1128/jvi.76.12.6356-6363.2002
pubmed: 12021368
pmcid: 136192
Zhu Y, Yamamoto T, Cullen J, Saputelli J, Aldrich CE, Miller DS, Litwin S, Furman PA, Jilbert AR, Mason WS (2001) Kinetics of hepadnavirus loss from the liver during inhibition of viral DNA synthesis. J Virol 75(1):311–322. https://doi.org/10.1128/JVI.75.1.311-322.2001
doi: 10.1128/JVI.75.1.311-322.2001
pubmed: 11119601
pmcid: 113925
Wu M, Wang C, Shi B et al (2020) A novel recombinant cccDNA-based mouse model with long term maintenance of rcccDNA and antigenemia. Antivir Res 180:104826. https://doi.org/10.1016/j.antiviral.2020.104826
doi: 10.1016/j.antiviral.2020.104826
pubmed: 32502604
Huang Q, Zhou B, Cai D et al (2021) Rapid turnover of hepatitis B virus covalently closed circular DNA indicated by monitoring emergence and reversion of signature-mutation in treated chronic hepatitis B patients. Hepatology 73(1):41–52. https://doi.org/10.1002/hep.31240
doi: 10.1002/hep.31240
pubmed: 32189364
Chen EQ, Wang ML, Tao YC, Wu DB, Liao J, He M, Tang H (2019) Serum HBcrAg is better than HBV RNA and HBsAg in reflecting intrahepatic covalently closed circular DNA. J Viral Hepat 26(5):586–595. https://doi.org/10.1111/jvh.13061
doi: 10.1111/jvh.13061
pubmed: 30632235
Li J, Sun X, Fang J, Wang C, Han G, Ren W (2017) Analysis of intrahepatic total HBV DNA, cccDNA and serum HBsAg level in Chronic Hepatitis B patients with undetectable serum HBV DNA during oral antiviral therapy. Clin Res Hepatol Gastroenterol 41(6):635–643. https://doi.org/10.1016/j.clinre.2017.03.004
doi: 10.1016/j.clinre.2017.03.004
pubmed: 28438570
Wong DK, Yuen MF, Yuan H, Sum SS, Hui CK, Hall J, Lai CL (2004) Quantitation of covalently closed circular hepatitis B virus DNA in chronic hepatitis B patients. Hepatology 40(3):727–737. https://doi.org/10.1002/hep.20353
doi: 10.1002/hep.20353
pubmed: 15349913
Li W, Zhao J, Zou Z et al (2014) Analysis of hepatitis B virus intrahepatic covalently closed circular DNA and serum viral markers in treatment-naive patients with acute and chronic HBV infection. PLoS ONE 9(2):e89046. https://doi.org/10.1371/journal.pone.0089046
doi: 10.1371/journal.pone.0089046
pubmed: 24551214
pmcid: 3923869
Chuaypen N, Sriprapun M, Praianantathavorn K et al (2017) Kinetics of serum HBsAg and intrahepatic cccDNA during pegylated interferon therapy in patients with HBeAg-positive and HBeAg-negative chronic hepatitis B. J Med Virol 89(1):130–138. https://doi.org/10.1002/jmv.24601
doi: 10.1002/jmv.24601
pubmed: 27307409
Wang X, Chi X, Wu R et al (2021) Serum HBV RNA correlated with intrahepatic cccDNA more strongly than other HBV markers during peg-interferon treatment. Virol J 18(1):4. https://doi.org/10.1186/s12985-020-01471-2
doi: 10.1186/s12985-020-01471-2
pubmed: 33407619
pmcid: 7789711
Zhong YW, Shi YM, Chu F et al (2021) Prediction for HBsAg seroconversion in children with chronic hepatitis B. BMC Infect Dis 21(1):1211. https://doi.org/10.1186/s12879-021-06883-1
doi: 10.1186/s12879-021-06883-1
pubmed: 34863101
pmcid: 8645145
Chan HL, Wong VW, Tse AM et al (2007) Serum hepatitis B surface antigen quantitation can reflect hepatitis B virus in the liver and predict treatment response. Clin Gastroenterol Hepatol 5(12):1462–1468. https://doi.org/10.1016/j.cgh.2007.09.005
doi: 10.1016/j.cgh.2007.09.005
pubmed: 18054753
Lin LY, Wong VW, Zhou HJ et al (2010) Relationship between serum hepatitis B virus DNA and surface antigen with covalently closed circular DNA in HBeAg-negative patients. J Med Virol 82(9):1494–1500. https://doi.org/10.1002/jmv.21863
doi: 10.1002/jmv.21863
pubmed: 20648602
Wang M, Qiu N, Lu S et al (2013) Serum hepatitis B surface antigen is correlated with intrahepatic total HBV DNAand cccDNA in treatment-naïve patients with chronic hepatitis B but not in patients with HBV related hepatocellular carcinoma. J Med Virol 85(2):219–227. https://doi.org/10.1002/jmv.23461
doi: 10.1002/jmv.23461
pubmed: 23168998
Wong DK, Fung J, Lee CK et al (2016) Intrahepatic hepatitis B virus replication and liver histology in subjects with occult hepatitis B infection. Clin Micro-Biol Infect 22(3):290.e1. https://doi.org/10.1016/j.cmi.2015.10.036
doi: 10.1016/j.cmi.2015.10.036
Wong DK, Cheng SCY, Mak LL et al (2020) Among patients with undetectable hepatitis B surface antigen and hepatocellular carcinoma, a high proportion has integration of HBV DNA into hepatocyte DNA and no cirrhosis. Clin Gastroenterol Hepatol 18(2):449–456. https://doi.org/10.1016/j.cgh.2019.06.029
doi: 10.1016/j.cgh.2019.06.029
pubmed: 31252193
Ren JH, Hu JL, Cheng ST et al (2018) SIRT3 restricts hepatitis B virus transcription and replication through epigenetic regulation of covalently closed circular DNA involving suppressor of variegation 3–9 homolog 1 and SET domain containing 1A histone methyltransferases. Hepatology 68(4):1260–1276. https://doi.org/10.1002/hep.29912
doi: 10.1002/hep.29912
pubmed: 29624717
Ren JH, Tao Y, Zhang ZZ et al (2014) Sirtuin 1 regulates hepatitis B virus transcription and replication by targeting transcription factor AP-1. J Virol 88(5):2442. https://doi.org/10.1128/JVI.02861-13
doi: 10.1128/JVI.02861-13
pubmed: 24335313
pmcid: 3958108
Nishitsuji H, Ujino S, Harada K et al (2018) TIP60 complex inhibits hepatitis B virus transcription. J Virol 92(6):e01788-e1817. https://doi.org/10.1128/JVI.01788-17
doi: 10.1128/JVI.01788-17
pubmed: 29321313
pmcid: 5827368
Yuan Y, Zhao K, Yao Y et al (2019) HDAC11 restricts HBV replication through epigenetic repression of cccDNA transcription. Antivir Res 172:104619. https://doi.org/10.1016/j.antiviral.2019.104619
doi: 10.1016/j.antiviral.2019.104619
pubmed: 31600533
Shahbazian MD, Grustein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100. https://doi.org/10.1146/annurev.biochem.76.052705.162114
doi: 10.1146/annurev.biochem.76.052705.162114
pubmed: 17362198
Parthun MR (2013) Histone acetyltransferase 1: more than just an enzyme? Biochim Biophys Acta 1819(3–4):256–263. https://doi.org/10.1016/j.bbagrm.2011.07.006
doi: 10.1016/j.bbagrm.2011.07.006
Yang G, Feng J, Liu Y et al (2019) HAT1 signaling confers to assembly and epigenetic regulation of HBV cccDNA minichromosome. Theranostics 9(24):7345–7358. https://doi.org/10.7150/thno.37173
doi: 10.7150/thno.37173
pubmed: 31695772
pmcid: 6831306
Qian G, Hu B, Zhou D et al (2015) NIRF, a novel ubiquitin ligase, inhibits hepatitis B virus replication through effect on HBV core protein and H3 histones. DNA Cell Biol 34(5):327–332. https://doi.org/10.1089/dna.2014.2714
doi: 10.1089/dna.2014.2714
pubmed: 25664994
Alarcon V, H S, Rubio L, et al (2016) The enzymes LSD1 and Set1A cooperate with the viral protein HBx to establish an active hepatitis B viral chromatin state. Sci Rep 6:25901. https://doi.org/10.1038/srep25901
doi: 10.1038/srep25901
pubmed: 27174370
pmcid: 4865824
Zhang W, Chen J, Wu M et al (2017) PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation. Hepatology 66(2):398–415. https://doi.org/10.1002/hep.29133
doi: 10.1002/hep.29133
pubmed: 28236308
Piracha ZZ, Saeed U, Kim J et al (2020) An alternatively spliced sirtuin 2 isoform 5 inhibits hepatitis B virus replication from cccDNA by repressing epigenetic modifications made by histone lysine methyltransferases. J Virol 94(16):e00926-e1020. https://doi.org/10.1128/JVI.00926-20
doi: 10.1128/JVI.00926-20
pubmed: 32493816
pmcid: 7394897
Xu L, Wu Z, Tan S et al (2018) Tumor suppressor ZHX2 restricts hepatitis B virus replication via epigenetic and non-epigenetic manners. Antivir Res 153:114–123. https://doi.org/10.1016/j.antiviral.2018.03.008
doi: 10.1016/j.antiviral.2018.03.008
pubmed: 29580980
Ducroux A, Benhenda S, Rivière L et al (2014) The Tudor domain protein Spindlin1 is involved in intrinsic antiviral defense against incoming hepatitis B Virus and herpes simplex virus type 1. PLoS Pathog 10(9):e1004343. https://doi.org/10.1371/journal.ppat.1004343
doi: 10.1371/journal.ppat.1004343
pubmed: 25211330
pmcid: 4161474
Zhang Y, He S, Guo J-J et al (2017) Retinoid X receptor D-dependent HBV minichromosome remodeling and viral replication. Ann Hepatol 16(4):501–509. https://doi.org/10.5604/01.3001.0010.0275
doi: 10.5604/01.3001.0010.0275
pubmed: 28611266
Vivekanandan P, Kannaigai R, Ray SC et al (2008) Comprehensive genetic and epigenetic analysis of occult hepatitis B from liver tissue samples. Clin Infect Dis 46(8):1227–1236. https://doi.org/10.1086/529437
doi: 10.1086/529437
pubmed: 18444860
pmcid: 3140175
Zhang Y, Mao R, Yan R (2014) Transcription of hepatitis B virus covalently closed circular DNA is regulated by CpG methylation during chronic infection. PLoS ONE 9(10):e110442. https://doi.org/10.1371/journal.pone.0110442
doi: 10.1371/journal.pone.0110442
pubmed: 25337821
pmcid: 4206413
Vivekanandan P, Daniel HD, Kannangai R et al (2010) Hepatitis B virus replication induces methylation of both host and viral DNA. J Virol 84(9):4321–4329. https://doi.org/10.1128/JVI.02280-09
doi: 10.1128/JVI.02280-09
pubmed: 20147412
pmcid: 2863779
Chong CK, Cheng CYS, Tsoi SYJ et al (2020) HBV X protein mutations affect HBV transcription and association of histone-modifying enzymes with covalently closed circular DNA. Sci Rep 10(1):802. https://doi.org/10.1038/s41598-020-57637-z
doi: 10.1038/s41598-020-57637-z
pubmed: 31964944
pmcid: 6972884
Wang RM, Jiang JN (2020) Research progress on the biological and clinical value of occult hepatitis B virus infection. Chin Hepatol 25(2):104–107. https://doi.org/10.3969/j.issn.1008-1704.2020.02.002
doi: 10.3969/j.issn.1008-1704.2020.02.002
Lu FM, Jie W, Chen XM et al (2020) Application of new serum indicators in the development of innovative hepatitis B drugs. Chin J Hepatol 28(8):649–653. https://doi.org/10.3760/cma.j.issn.1007-3418.2020.08.101
doi: 10.3760/cma.j.issn.1007-3418.2020.08.101
Pollicino T, Musolino C, Saitta C et al (2019) Free episomal and integrated HBV DNA in HBsAg-negative patients with intrahepatic cholangiocarcinoma. Oncotarget 10(39):3931–3938. https://doi.org/10.18632/oncotarget.27002
doi: 10.18632/oncotarget.27002
pubmed: 31231470
pmcid: 6570464
Bivigou-Mboumba B, Rouet F, Mouinga-Ondeme A et al (2017) Hepatitis B, C, and E infection among HIV-infected patients in Franceville, Gabon:retrospective cross-sectional study. Med Sante Trop 27(3):274–280. https://doi.org/10.1684/mst.2017.0698
doi: 10.1684/mst.2017.0698
pubmed: 28947403
Pollicino T, Belloni L, Raffa G et al (2006) Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology 130(3):823–837. https://doi.org/10.1053/j.2006.01.001
doi: 10.1053/j.2006.01.001
pubmed: 16530522
Belloni L, Allweiss L, Guerrieri F et al (2012) IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Invest 122(2):529–537. https://doi.org/10.1172/JCI58847
doi: 10.1172/JCI58847
pubmed: 22251702
pmcid: 3266786
Yuan Y, Yuan H, Yang G et al (2020) IFN-α confers epigenetic regulation of HBV cccDNA minichromosome by modulating GCN5-mediated succinylation of histone H3K79 to clear HBV cccDNA. Clin Epigenetics 12(1):135. https://doi.org/10.1186/s13148-020-00928-z
doi: 10.1186/s13148-020-00928-z
pubmed: 32894195
pmcid: 7487718
Liu Z, Wang J, Yuan H et al (2020) IFN-α2b inhibits the ethanol enriched-HBV cccDNA through blocking a positive feedback loop of HBx/MSL2/cccDNA/HBV/HBx in liver. Biochem Biophys Res Commun 527(1):76–82. https://doi.org/10.1016/j.bbrc.2020.04.057
doi: 10.1016/j.bbrc.2020.04.057
pubmed: 32446394
Zhao LN, Yuan HF, Wang YF et al (2021) IFN-α inhibits HBV transcription and replication by promoting HDAC3-mediated de-2-hydroxyisobutyrylation of histone H4K8 on HBV cccDNA minichromosome in liver. Acta Pharmacol Sin 43(6):1484–1494. https://doi.org/10.1038/s41401-021-00765-7
doi: 10.1038/s41401-021-00765-7
pubmed: 34497374
pmcid: 9160025
Palumbo GA, Scisciani C, Pediconi N et al (2015) IL6 inhibits HBV transcription by targeting the epigenetic control of the nuclear cccDNA minichromosome. PLoS ONE 10(11):e0142599. https://doi.org/10.1371/journal.pone.0142599
doi: 10.1371/journal.pone.0142599
pubmed: 26580974
pmcid: 4651563
Wei ZQ, Zhang YH, Ke CZ et al (2017) Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation. World J Gastroenterol 23(34):6252–6260. https://doi.org/10.3748/wjg.v23.i34.6252
doi: 10.3748/wjg.v23.i34.6252
pubmed: 28974891
pmcid: 5603491
Cheng D, Han B, Zhang W et al (2021) Clinical effects of NTCP-inhibitor myrcludex B. J Viral Hepat 28(6):852–858. https://doi.org/10.1111/jvh.13490
doi: 10.1111/jvh.13490
pubmed: 33599010
Pollicino T, Musolino C, Irrera N et al (2018) Flavocoxid exerts a potent antiviral effect against hepatitis B virus. Inflamm Res 67(1):89–103. https://doi.org/10.1007/s00011-017-1099-2
doi: 10.1007/s00011-017-1099-2
pubmed: 29018874
Ren F, Yang X, Hu ZW et al (2019) Niacin analogue,6-Aminonicotinamide, a novel inhibitor of hepatitis B virus replication and HBsAg production. EBioMedicine 49:232–246. https://doi.org/10.1016/j.ebiom.2019.10.022
doi: 10.1016/j.ebiom.2019.10.022
pubmed: 31680002
pmcid: 6945246
Li X, Liu H, Cheng W et al (2020) Junceellolide B, a novel inhibitor of Hepatitis B virus. Bioorg Med Chem 28(16):115603. https://doi.org/10.1016/j.bmc.2020.115603
doi: 10.1016/j.bmc.2020.115603
pubmed: 32690259
Cheng ST, Hu JL, Ren JH et al (2021) Dicoumarol, an NQO1 inhibitor, blocks cccDNA transcription by promoting degradation of HBx. J Hepatol 74(3):522–534. https://doi.org/10.1016/j.jhep.2020.09.019
doi: 10.1016/j.jhep.2020.09.019
pubmed: 32987030
Lucifora J, Xia Y, Reisinger F et al (2014) Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science 343(6176):1221–1228. https://doi.org/10.1126/science.1243462
doi: 10.1126/science.1243462
pubmed: 24557838
pmcid: 6309542
Faure-Dupuy S, Riedl T, Rolland M et al (2021) Control of APOBEC3B induction and cccDNA decay by NF-κB and miR-138-5p. JHEP Rep 3(6):100354. https://doi.org/10.1016/j.jhepr.2021.100354
doi: 10.1016/j.jhepr.2021.100354
pubmed: 34704004
pmcid: 8523871
Kostyushev D, Brezgin S, Kostyusheva A et al (2019) Orthologous CRISPR/Cas9 systems for specific and efficient degradation of covalently closed circular DNA of hepatitis B virus. Cell Mol Life Sci 76(9):1779–1794. https://doi.org/10.1007/s00018-019-03021-8
doi: 10.1007/s00018-019-03021-8
pubmed: 30673820
Bloom K, Kaldine H, Cathomen T et al (2019) Inhibition of replication of hepatitis B virus using transcriptional repressors that target the viral DNA. BMC Infect Dis 19(1):802. https://doi.org/10.1186/s12879-019-4436-y
doi: 10.1186/s12879-019-4436-y
pubmed: 31510934
pmcid: 6739920