Simple and low-cost antibiotic susceptibility testing for Mycobacterium tuberculosis using screen-printed electrodes.

Mycobacterium tuberculosis (TB) antibiotic susceptibility testing antimicrobial resistance profiling electrochemical sensing

Journal

Biotechnology and applied biochemistry
ISSN: 1470-8744
Titre abrégé: Biotechnol Appl Biochem
Pays: United States
ID NLM: 8609465

Informations de publication

Date de publication:
Jun 2023
Historique:
received: 26 06 2022
accepted: 22 01 2023
medline: 21 6 2023
pubmed: 5 2 2023
entrez: 4 2 2023
Statut: ppublish

Résumé

One quarter of the global population is thought to be latently infected by Mycobacterium tuberculosis (TB) with it estimated that 1 in 10 of those people will go on to develop active disease. Due to the fact that M. tuberculosis (TB) is a disease most often associated with low- and middle-income countries, it is critical that low-cost and easy-to-use technological solutions are developed, which can have a direct impact on diagnosis and prescribing practice for TB. One area where intervention could be particularly useful is antibiotic susceptibility testing (AST). This work presents a low-cost, simple-to-use AST sensor that can detect drug susceptibility on the basis of changing RNA abundance for the typically slow-growing M. tuberculosis (TB) pathogen in 96 h using screen-printed electrodes and standard molecular biology laboratory reactionware. In order to find out the sensitivity of applied sensor platform, a different concentration (10

Identifiants

pubmed: 36738290
doi: 10.1002/bab.2448
doi:

Substances chimiques

Antitubercular Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1397-1406

Subventions

Organisme : British Council Institutional Links
ID : 20180209
Organisme : Türkiye Bilimsel ve Teknolojik Arastirma Kurumu
ID : 217S793

Informations de copyright

© 2023 International Union of Biochemistry and Molecular Biology, Inc.

Références

Lonsdale, DO, Lipman, J. Global personalization of antibiotic therapy in critically ill patients Expert Rev Precis Med Drug Dev. 2021;6:87-93.
Mangtani, P, Nguipdop-Djomo, P, Keogh, RH, Trinder, L, Smith, PG, Fine, PE, et al. Observational study to estimate the changes in the effectiveness of bacillus Calmette-Guérin (BCG) vaccination with time since vaccination for preventing tuberculosis in the UK Health Technol Assess. 2017;21:7.
Letang, E, Ellis, J, Naidoo, K, Casas, EC, Sánchez, P, Hassan-Moosa, R, et al. Tuberculosis-HIV Co-Infection: Progress and Challenges After Two Decades of Global Antiretroviral Treatment Roll-Out Arch Bronconeumol. 2020;56(7):446-54.
Creswell, J, Sahu, S, Blok, L, Bakker, MI, Stevens, R, Ditiu, L. A Multi-Site Evaluation of Innovative Approaches to Increase Tuberculosis Case Notification: Summary Results PLoS One. 2014;9:e94465.
Dizaji, AN, Ozturk, Y, Ghorbanpoor, H, Cetak, A, Akcakoca, I, Kocagoz, T, et al. Investigation of the Effect of Channel Structure and Flow Rate on On-Chip Bacterial Lysis IEEE Trans Nanobiosci. 2020;20:86-91.
Organization, WH. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Geneva: World Health Organization; 2014.
Norouz Dizaji, A, Ali, Z, Ghorbanpoor, H, Ozturk, Y, Akcakoca, I, et al. Electrochemical-based ‘‘antibiotsensor’’ for the whole-cell detection of the vancomycin-susceptible bacteria Talanta. 2021;234:122695.
Fonseca, JD, Knight, GM, Mchugh, TD. The complex evolution of antibiotic resistance in Mycobacterium tuberculosis Int J Infect Dis. 2015;32:94-100.
Smith, T, Wolff, KA, Nguyen, L. Pathogenesis of Mycobacterium tuberculosis and its interaction with the host organism. Berlin, Heidelberg: Springer; 2012. p. 53-80.
Houben, RMGJ, Dodd, PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 2016;13:e1002152.
Coban, AY. Blood Agar Validation for Susceptibility Testing of Isoniazid, Rifampicin, Ethambutol, and Streptomycin to Mycobacterium tuberculosis Isolates PLoS One. 2013;8:e55370.
Hall, L, Jude, KP, Clark, SL, Wengenack, NL. JoVE. 2011;52:e3094.
Balouiri, M, Sadiki, M, Ibnsouda, SK. Methods for in vitro evaluating antimicrobial activity: A review J Pharm Anal. 2016;6:71-79.
Khan, ZA, Siddiqui, MF, Park, S. Current and Emerging Methods of Antibiotic Susceptibility Testing Diagnostics. 2019;9:49.
Tannert, A, Grohs, R, Popp, J, Neugebauer, U. Phenotypic antibiotic susceptibility testing of pathogenic bacteria using photonic readout methods: recent achievements and impact Appl Microbiol Biotechnol. 2019;103:549-66.
Dogan Guzel, F, Pletzer, D, Norouz Dizaji, A, Al-Nahas, K, Bajrai, M, Winterhalter, M. Towards understanding single-channel characteristics of OccK8 purified from Pseudomonas aeruginosa Eur Biophys J. 2021;50:87-98.
Dogan Guzel, F, Citak, F. Development of an On-Chip Antibiotic Permeability Assay With Single Molecule Detection Capability IEEE Trans Nanobiosci. 2018;17:155-60.
Safavieh, M, Pandya, HJ, Venkataraman, M, Thirumalaraju, P, Kanakasabapathy, MK, Singh, A, et al. Rapid Real-Time Antimicrobial Susceptibility Testing with Electrical Sensing on Plastic Microchips with Printed Electrodes ACS Appl Mater Interfaces. 2017;9:12832-40.
Gilpin, C, Korobitsyn, A, Weyer, K. Ther Adv Infect Dis. 2016;3:145-51.
Reynoso, EC, Laschi, S, Palchetti, I, Torres, E. Advances in Antimicrobial Resistance Monitoring Using Sensors and Biosensors: A Review Chemosensors. 2021;9:232.
Meng, Q, Liu, S, Meng, J, Feng, J, Mecklenburg, M, Zhu, L, et al. Rapid personalized AMR diagnostics using two-dimensional antibiotic resistance profiling strategy employing a thermometric NDM-1 biosensor Biosens Bioelectron. 2021;193:113526.
Guntupalli, R, Sorokulova, I, Olsen, E, Globa, L, Pustovyy, O, Vodyanoy, V JoVE. 2013;75:e50474.
Dogan Guzel, F, Citak, F. Development of an On-Chip Antibiotic Permeability Assay With Single Molecule Detection Capability IEEE Trans Nanobiosci. 2018;17:155-60.
Dogan Guzel, F, Pletzer, D, Norouz Dizaji, A, Al-Nahas, K, Bajrai, M, Winterhalter, M. Towards understanding single-channel characteristics of OccK8 purified from Pseudomonas aeruginosa Eur Biophys J. 2021;50:87-98.
Henihan, G, Schulze, H, Corrigan, DK, Giraud, G, Terry, JG, Hardie, A, et al. Label- and amplification-free electrochemical detection of bacterial ribosomal RNA Biosens Bioelectron. 2016;81:487-94.
Besant, JD, Sargent, EH, Kelley, SO. Rapid electrochemical phenotypic profiling of antibiotic-resistant bacteria Lab Chip. 2015;15:2799-807.
Bolotsky, A, Muralidharan, R, Butler, D, Root, K, Murray, W, Liu, Z, et al. Organic redox-active crystalline layers for reagent-free electrochemical antibiotic susceptibility testing (ORACLE-AST) Biosens Bioelectron. 2021;172:112615.
Corrigan, DK, Schulze, H, Henihan, G, Hardie, A, Ciani, I, Giraud, G, et al. Development of a PCR-free electrochemical point of care test for clinical detection of methicillin resistant Staphylococcus aureus (MRSA) Analyst. 2013;138:6997-7005.
Güzel, FD, Ghorbanpoor, H, Dizaji, AN, Akcakoca, I, Ozturk, Y, Kocagoz, T, et al. Biotechnol Appl Biochem. 2020;68(6), 1159-66.
Verma, A, Sampla, AK, Tyagi, JS. Mycobacterium tuberculosis rrn Promoters: Differential Usage and Growth Rate-Dependent Control J Bacteriol. 1999;181:4326-33.
Alizadeh, M, Mehmandoust, M, Nodrat, O, Salmanpour, S, Erk, N. A glassy carbon electrode modified based on molybdenum disulfide for determination of folic acid in the real samples J Food Meas Charact. 2021;15:5622-9.
Blair, EO, Hannah, S, Vezza, V, Avcı, H, Kocagoz, T, Hoskisson, PA, et al. Biologically modified microelectrode sensors provide enhanced sensitivity for detection of nucleic acid sequences from Mycobacterium tuberculosis Sens Actuators Rep. 2020;2:100008.
Rahman, M, Heng, LY, Futra, D, Chiang, CP, Rashid, ZA, Ling, TL. Nanoscale Res Lett. 2017;12:1-10.
Koç, Y, Morali, U, Erol, S, Avci, H. Turk J Chem. 2021;45(6):1895-915
Koç, Y, Moralı, U, Erol, S, Avci, H. Electrochemical Investigation of Gold Based Screen Printed Electrodes: An Application for a Seafood Toxin Detection Electroanalysis. 2021;33:1033-48.
Guzel, FD, Akcakoca, I, Ghorbanpoor, H, Dizaji, AN, Öztürk, Y, Blair, E, et al. Eskişehir Tech Univ J Sci Technol A-Appl Sci Eng. 2021;22:344-52.
Ghorbanpoor, H, Corrigan, D, Guzel, FD. Sakarya Univ J Sci. 2022;26:119-26.
Butterworth, A, Blues, E, Williamson, P, Cardona, M, Gray, L, Corrigan, DK. SAM Composition and Electrode Roughness Affect Performance of a DNA Biosensor for Antibiotic Resistance Biosensors. 2019;9:22.
Faulkner, LR, Bard, AJ. Electrochemical methods: fundamentals and applications John Wiley and Sons; 2002.
Akbulut, SO, Ghorbanpoor, H, İpteç, BÖ, Butterworth, A, Avcıoğlu, G, Kozacı, LD, et al. N Appl Sci. 2020;2(5):1-6.
Kaur, J, Ozturk, Y, Ghorbanpoor, H, Kaygusuz, O, Darcan, C, Trabzon, L, et al. Integrated microfluidic chip development for the quantification of antibiotic permeability rates through bacteria cell wall. In: EurasianBioChem. 2019.
Hannah, S, Addington, E, Alcorn, D, Shu, W, Hoskisson, PA, Corrigan, DK. Rapid antibiotic susceptibility testing using low-cost, commercially available screen-printed electrodes Biosens Bioelectron. 2019;145:111696.
Ghorbanpoor, H, Dizaji, AN, Akcakoca, I, Blair, EO, Ozturk, Y, Hoskisson, P, et al. A fully integrated rapid on-chip antibiotic susceptibility test - A case study for Mycobacterium smegmatis Sens Actuators, A. 2022;339:113515.
Pourmir, AR, Bahrmand, AR, Ettefagh Far, SH, Hadizadeh Tasbiti, AR, Yari, Sh. Rapid diagnosis of mycobacterium tuberculosis with electrical impedance spectroscopy in suspensions using interdigitated microelectrode J Anal Chem. 2016;71:676-84.
Nimse, S, Song, K, Sonawane, M, Sayyed, D, Kim, T. Immobilization Techniques for Microarray: Challenges and Applications Sensors. 2014;14:22208-29.
Teh, HF, Gong, H, Dong, X-D, Zeng, X, Lai Kuan Tan, A, Yang, X, et al. Electrochemical biosensing of DNA with capture probe covalently immobilized onto glassy carbon surface Anal Chim Acta. 2005;551:23-29.
Franco-Álvarez De Luna, F, Ruiz, P, Gutiérrez, J, Casal, M. Evaluation of the GenoType Mycobacteria Direct Assay for Detection of Mycobacterium tuberculosis Complex and Four Atypical Mycobacterial Species in Clinical Samples J Clin Microbiol. 2006;44:3025-7.
Neonakis, IK, Gitti, Z, Baritaki, S, Petinaki, E, Baritaki, M, Spandidos, DA. Evaluation of GenoType Mycobacteria Direct Assay in Comparison with Gen-Probe Mycobacterium tuberculosis Amplified Direct Test and GenoType MTBDR plus for Direct Detection of Mycobacterium tuberculosis Complex in Clinical Samples J Clin Microbiol. 2009;47:2601-3.
Lv, Z, Zhang, M, Zhang, H, Lu, X. Utility of real-time quantitative polymerase chain reaction in detecting Mycobacterium tuberculosis. Biomed Res Int. 2017;2017.
Detjen, AK, Dinardo, AR, Leyden, J, Steingart, KR, Menzies, D, Schiller, I, et al. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis Lancet Respir Med. 2015;3:451-61.
Chawla, K, Johar, R, Vishwanath, S, Mukhopadhyay, C. Role of PCR in the diagnosis of Pulmonary and extra-Pulmonary Tuberculosis. Natl J Lab Med. 2015.
Singh, BK, Sharma, SK, Sharma, R, Sreenivas, V, Myneedu, VP, Kohli, M, et al. Diagnostic utility of a line probe assay for multidrug resistant-TB in smear-negative pulmonary tuberculosis PLoS One. 2017;12:e0182988.
Costa, MP, Andrade, CAS, Montenegro, RA, Melo, FL, Oliveira, MDL. Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor J Colloid Interface Sci. 2014;433:141-8.
Hamdan, NA, Issa, R, Md Noh, MF, Zin, NM. Electrochemical Technique using Methylene Blue with Pencil Graphite Electrode for Optimum Detection of Mycobacterium tuberculosis DNA Curr Res Tuberc. 2012:4:1-12.
Liu, C, Jiang, D, Xiang, G, Liu, L, Liu, F, Pu, X. An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle-polyaniline nanocomposite Analyst. 2014;139:5460-5.
Mat Zaid, MH, Abdullah, J, Yusof, NA, Sulaiman, Y, Wasoh, H, Md Noh, MF, et al. PNA biosensor based on reduced graphene oxide/water soluble quantum dots for the detection of Mycobacterium tuberculosis Sens Actuators, B. 2017;241:1024-34.
Alfarhan, K, Zakaria, A, Yusof, N, Zakaria, S, Abdullah, J, Kamarudin, L, et al. Electrochemical techniques-based approaches Mycobacterium Tcobacterium detection: last decade review. IOP Publishing; 2019. p. 012019.
Siddiqi, S, Ahmed, A, Asif, S, Behera, D, Javaid, M, Jani, J, et al. Direct Drug Susceptibility Testing of Mycobacterium tuberculosis for Rapid Detection of Multidrug Resistance Using the Bactec MGIT 960 System: a Multicenter Study J Clin Microbiol. 2012;50:435-40.
Van Klingeren, B, Dessens-Kroon, M, Van Der Laan, T, Kremer, K, Van Soolingen, D. Drug Susceptibility Testing of Mycobacterium tuberculosis Complex by Use of a High-Throughput, Reproducible, Absolute Concentration Method J Clin Microbiol. 2007;45:2662-8.
Torres-Chavolla, E, Alocilja, EC. Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification Biosens Bioelectron. 2011;26:4614-8.
Mohamad, F, Abdullah, J, Zawawi, R, Lim, H, Sulaiman, Y. Synthesis and Characterization of Polyaniline/Graphene Composite Nanofiber and Its Application as an Electrochemical DNA Biosensor for the Detection of Mycobacterium tuberculosis Sensors. 2017;17:2789.
Mogha, NK, Sahu, V, Sharma, RK, Masram, DT. Reduced graphene oxide nanoribbon immobilized gold nanoparticle based electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis J Mater Chem B. 2018;6:5181-7.
Miodek, A, Mejri, N, Gomgnimbou, M, Sola, C, Korri-Youssoufi, H. E-DNA Sensor of Mycobacterium tuberculosis Based on Electrochemical Assembly of Nanomaterials (MWCNTs/PPy/PAMAM) Anal Chem. 2015;87:9257-64.
Thakur, H, Kaur, N, Sabherwal, P, Sareen, D, Prabhakar, N. Aptamer based voltammetric biosensor for the detection of Mycobacterium tuberculosis antigen MPT64 Microchim Acta. 2017;184:1915-22.
Thakur, H, Kaur, N, Sareen, D, Prabhakar, N. Electrochemical determination of M. tuberculosis antigen based on Poly(3,4-ethylenedioxythiophene) and functionalized carbon nanotubes hybrid platform Talanta. 2017;171:115-23.
Liu, Y, Tuleouva, N, Ramanculov, E, Revzin, A. Aptamer-Based Electrochemical Biosensor for Interferon Gamma Detection Anal Chem. 2010;82:8131-6.
Das, M, Dhand, C, Sumana, G, Srivastava, AK, Vijayan, N, Nagarajan, R, et al. Zirconia grafted carbon nanotubes based biosensor for M. Tuberculosis detection Appl Phys Lett. 2011;99:143702.
Salimiyan Rizi, K, Aryan, E, Meshkat, Z, Ranjbar, G, Sankian, M, Ghazvini, K, et al. The overview and perspectives of biosensors and Mycobacterium tuberculosis : A systematic review J Cell Physiol. 2021;236:1730-50.
Hannah, S, Addington, E, Alcorn, D, Shu, W, Hoskisson, PA, Corrigan, DK. Rapid antibiotic susceptibility testing using low-cost, commercially available screen-printed electrodes Biosens Bioelectron. 2019;145:111696.
Akcakoca, I, Ghorbanpoor, H, Blair, E, Ozturk, Y, Norouz Dizaji, A, Kocagoz, T, et al. An electrochemical biosensor with integrated microheater to improve the sensitivity of electrochemical nucleic acid biosensors J Micromech Microeng. 2022;32:045008.

Auteurs

Hamed Ghorbanpoor (H)

Department of Biomedical Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey.
Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey.
Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey.
Cellular Therapy and Stem Cell Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey.
AvciBio Research Group, Eskisehir Osmangazi University, Eskisehir, Turkey.

Iremnur Akcakoca (I)

Department of Metallurgical and Material Engineering, Yildirim Beyazit University, Ankara, Turkey.

Araz Norouz Dizaji (A)

Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey.

Adrian Butterworth (A)

Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK.

Damion Corrigan (D)

Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK.
Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK.

Tanil Kocagoz (T)

Department of Medical Biotechnology, Institute of Health Sciences, Istanbul, Turkey.
Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.

Aliakbar Ebrahimi (A)

Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey.
Cellular Therapy and Stem Cell Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey.
AvciBio Research Group, Eskisehir Osmangazi University, Eskisehir, Turkey.

Huseyin Avci (H)

Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey.
Cellular Therapy and Stem Cell Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey.
AvciBio Research Group, Eskisehir Osmangazi University, Eskisehir, Turkey.
Translational Medicine Research and Clinical Center, Eskisehir Osmangazi University, Eskisehir, Turkey.

Fatma Dogan Guzel (F)

Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH