Measuring the effects of ice thickness on resolution in single particle cryo-EM.
Cryo-EM
Energy filter
High tension
Ice thickness
Resolution
Single particle analysis
Journal
Journal of structural biology: X
ISSN: 2590-1524
Titre abrégé: J Struct Biol X
Pays: United States
ID NLM: 101761384
Informations de publication
Date de publication:
2023
2023
Historique:
received:
29
11
2022
revised:
10
01
2023
accepted:
23
01
2023
entrez:
6
2
2023
pubmed:
7
2
2023
medline:
7
2
2023
Statut:
epublish
Résumé
Ice thickness is a critical parameter in single particle cryo-EM - too thin ice can break during imaging or exclude the sample of interest, while ice that is too thick contributes to more inelastic scattering that precludes obtaining high resolution reconstructions. Here we present the practical effects of ice thickness on resolution, and the influence of energy filters, accelerating voltage, or detector mode. We collected apoferritin data with a wide range of ice thicknesses on three microscopes with different instrumentation and settings. We show that on a 300 kV microscope, using a 20 eV energy filter slit has a greater effect on improving resolution in thicker ice; that operating at 300 kV instead of 200 kV accelerating voltage provides significant resolution improvements at an ice thickness above 150 nm; and that on a 200 kV microscope using a detector operating in super resolution mode enables good reconstructions for up to 200 nm ice thickness, while collecting in counting instead of linear mode leads to improvements in resolution for ice of 50-150 nm thickness. Our findings can serve as a guide for users seeking to optimize data collection or sample preparation routines for both single particle and in situ cryo-EM. We note that most in situ data collection is done on samples in a range of ice thickness above 150 nm so these results may be especially relevant to that community.
Identifiants
pubmed: 36742017
doi: 10.1016/j.yjsbx.2023.100085
pii: S2590-1524(23)00001-6
pmc: PMC9894782
doi:
Types de publication
Journal Article
Langues
eng
Pagination
100085Informations de copyright
© 2023 The Authors.
Déclaration de conflit d'intérêts
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Références
Protein Sci. 2021 Jan;30(1):136-150
pubmed: 33030237
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Q Rev Biophys. 1995 May;28(2):171-93
pubmed: 7568675
Trends Biochem Sci. 2019 Oct;44(10):837-848
pubmed: 31078399
Acta Crystallogr D Struct Biol. 2021 May 1;77(Pt 5):565-571
pubmed: 33950013
Nat Commun. 2021 Jul 15;12(1):4333
pubmed: 34267200
Elife. 2018 May 29;7:
pubmed: 29809143
J Struct Biol. 2018 Oct;204(1):38-44
pubmed: 29981485
Ultramicroscopy. 2022 Jul;237:113510
pubmed: 35367900
Commun Biol. 2022 Aug 15;5(1):817
pubmed: 35965271
J Mol Biol. 2005 Oct 28;353(3):493-6
pubmed: 16185710
Microscopy (Oxf). 2016 Feb;65(1):35-41
pubmed: 26546989
Nature. 2020 Nov;587(7832):152-156
pubmed: 33087931
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49):
pubmed: 34873060
J Struct Biol. 2009 Apr;166(1):95-102
pubmed: 19263523
J Struct Biol. 2006 Dec;156(3):524-36
pubmed: 16987672
Nat Methods. 2017 Mar;14(3):290-296
pubmed: 28165473
Front Mol Biosci. 2022 Jun 17;9:890390
pubmed: 35782862
Ultramicroscopy. 2019 Aug;203:125-131
pubmed: 30773415
Nat Methods. 2013 Jun;10(6):584-90
pubmed: 23644547
J Struct Biol. 2005 Jul;151(1):41-60
pubmed: 15890530
IUCrJ. 2019 Oct 11;6(Pt 6):1086-1098
pubmed: 31709064
Nat Methods. 2017 Apr;14(4):331-332
pubmed: 28250466