Evaluating LC-HRMS metabolomics data processing software using FAIR principles for research software.

FAIR principles Liquid chromatography-mass spectrometry Metabolomics Open science Reproducibility Research software

Journal

Metabolomics : Official journal of the Metabolomic Society
ISSN: 1573-3890
Titre abrégé: Metabolomics
Pays: United States
ID NLM: 101274889

Informations de publication

Date de publication:
06 02 2023
Historique:
received: 08 12 2022
accepted: 20 01 2023
entrez: 6 2 2023
pubmed: 7 2 2023
medline: 9 2 2023
Statut: epublish

Résumé

Liquid chromatography-high resolution mass spectrometry (LC-HRMS) is a popular approach for metabolomics data acquisition and requires many data processing software tools. The FAIR Principles - Findability, Accessibility, Interoperability, and Reusability - were proposed to promote open science and reusable data management, and to maximize the benefit obtained from contemporary and formal scholarly digital publishing. More recently, the FAIR principles were extended to include Research Software (FAIR4RS). This study facilitates open science in metabolomics by providing an implementation solution for adopting FAIR4RS in the LC-HRMS metabolomics data processing software. We believe our evaluation guidelines and results can help improve the FAIRness of research software. We evaluated 124 LC-HRMS metabolomics data processing software obtained from a systematic review and selected 61 software for detailed evaluation using FAIR4RS-related criteria, which were extracted from the literature along with internal discussions. We assigned each criterion one or more FAIR4RS categories through discussion. The minimum, median, and maximum percentages of criteria fulfillment of software were 21.6%, 47.7%, and 71.8%. Statistical analysis revealed no significant improvement in FAIRness over time. We identified four criteria covering multiple FAIR4RS categories but had a low %fulfillment: (1) No software had semantic annotation of key information; (2) only 6.3% of evaluated software were registered to Zenodo and received DOIs; (3) only 14.5% of selected software had official software containerization or virtual machine; (4) only 16.7% of evaluated software had a fully documented functions in code. According to the results, we discussed improvement strategies and future directions.

Sections du résumé

BACKGROUND
Liquid chromatography-high resolution mass spectrometry (LC-HRMS) is a popular approach for metabolomics data acquisition and requires many data processing software tools. The FAIR Principles - Findability, Accessibility, Interoperability, and Reusability - were proposed to promote open science and reusable data management, and to maximize the benefit obtained from contemporary and formal scholarly digital publishing. More recently, the FAIR principles were extended to include Research Software (FAIR4RS).
AIM OF REVIEW
This study facilitates open science in metabolomics by providing an implementation solution for adopting FAIR4RS in the LC-HRMS metabolomics data processing software. We believe our evaluation guidelines and results can help improve the FAIRness of research software.
KEY SCIENTIFIC CONCEPTS OF REVIEW
We evaluated 124 LC-HRMS metabolomics data processing software obtained from a systematic review and selected 61 software for detailed evaluation using FAIR4RS-related criteria, which were extracted from the literature along with internal discussions. We assigned each criterion one or more FAIR4RS categories through discussion. The minimum, median, and maximum percentages of criteria fulfillment of software were 21.6%, 47.7%, and 71.8%. Statistical analysis revealed no significant improvement in FAIRness over time. We identified four criteria covering multiple FAIR4RS categories but had a low %fulfillment: (1) No software had semantic annotation of key information; (2) only 6.3% of evaluated software were registered to Zenodo and received DOIs; (3) only 14.5% of selected software had official software containerization or virtual machine; (4) only 16.7% of evaluated software had a fully documented functions in code. According to the results, we discussed improvement strategies and future directions.

Identifiants

pubmed: 36745241
doi: 10.1007/s11306-023-01974-3
pii: 10.1007/s11306-023-01974-3
doi:

Types de publication

Systematic Review Journal Article Review Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

11

Subventions

Organisme : NIDDK NIH HHS
ID : K01DK115632
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1TR001427
Pays : United States

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Adusumilli, R., & Mallick, P. (2017). Data Conversion with ProteoWizard msConvert. Methods in Molecular Biology. (Clifton N J), 1550, 339–368. https://doi.org/10.1007/978-1-4939-6747-6_23 .
doi: 10.1007/978-1-4939-6747-6_23
Aghamohammadi, A., Mirian-Hosseinabadi, S. H., & Jalali, S. (2021). Statement frequency coverage: a code coverage criterion for assessing test suite effectiveness. Information and Software Technology, 129, 106426. https://doi.org/10.1016/j.infsof.2020.106426 .
doi: 10.1016/j.infsof.2020.106426
Agrawal, S., Kumar, S., Sehgal, R., George, S., Gupta, R., Poddar, S., Jha, A., & Pathak, S. (2019). El-MAVEN: A Fast, Robust, and User-Friendly Mass Spectrometry Data Processing Engine for Metabolomics. Methods in Molecular Biology (Clifton, N.J.), 1978, 301–321. https://doi.org/10.1007/978-1-4939-9236-2_19
Alonso, A., Julià, A., Beltran, A., Vinaixa, M., Díaz, M., Ibañez, L., Correig, X., & Marsal, S. (2011). AStream: an R package for annotating LC/MS metabolomic data. Bioinformatics, 27(9), 1339–1340. https://doi.org/10.1093/bioinformatics/btr138 .
doi: 10.1093/bioinformatics/btr138 pubmed: 21414990
Analytica Chimica Acta | Journal | ScienceDirect.com by Elsevier. (n.d.). Retrieved September 16, from https://www.sciencedirect.com/journal/analytica-chimica-acta
Barker, M., Chue Hong, N. P., Katz, D. S., Lamprecht, A. L., Martinez-Ortiz, C., Psomopoulos, F., Harrow, J., Castro, L. J., Gruenpeter, M., Martinez, P. A., & Honeyman, T. (2022). Introducing the FAIR principles for research software. Scientific Data, 9(1), https://doi.org/10.1038/s41597-022-01710-x .
Berrios, D. C., Beheshti, A., & Costes, S. V. (n.d.). FAIRness and Usability for Open-access Omics Data Systems. 10.
Broeckling, C. D., Afsar, F. A., Neumann, S., Ben-Hur, A., & Prenni, J. E. (2014). RAMClust: a Novel feature clustering method enables spectral-matching-based annotation for Metabolomics Data. Analytical Chemistry, 86(14), 6812–6817. https://doi.org/10.1021/ac501530d .
doi: 10.1021/ac501530d pubmed: 24927477
Brunius, C., Shi, L., & Landberg, R. (2016). Large-scale untargeted LC-MS metabolomics data correction using between-batch feature alignment and cluster-based within-batch signal intensity drift correction. Metabolomics: Official Journal of the Metabolomic Society, 12(11), 173. https://doi.org/10.1007/s11306-016-1124-4 .
doi: 10.1007/s11306-016-1124-4 pubmed: 27746707
Bueschl, C., Kluger, B., Neumann, N. K. N., Doppler, M., Maschietto, V., Thallinger, G. G., Meng-Reiterer, J., Krska, R., & Schuhmacher, R. (2017). MetExtract II: a Software suite for stable isotope-assisted untargeted metabolomics. Analytical Chemistry, 89(17), 9518–9526. https://doi.org/10.1021/acs.analchem.7b02518 .
doi: 10.1021/acs.analchem.7b02518 pubmed: 28787149 pmcid: 5588095
Cai, Y., Weng, K., Guo, Y., Peng, J., & Zhu, Z. J. (2015). An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing. Metabolomics, 11(6), 1575–1586. https://doi.org/10.1007/s11306-015-0809-4 .
doi: 10.1007/s11306-015-0809-4
Capellades, J., Navarro, M., Samino, S., Garcia-Ramirez, M., Hernandez, C., Simo, R., Vinaixa, M., & Yanes, O. (2016). geoRge: a computational Tool to detect the Presence of stable isotope labeling in LC/MS-Based untargeted metabolomics. Analytical Chemistry, 88(1), 621–628. https://doi.org/10.1021/acs.analchem.5b03628 .
doi: 10.1021/acs.analchem.5b03628 pubmed: 26639619
Chokkathukalam, A., Jankevics, A., Creek, D. J., Achcar, F., Barrett, M. P., & Breitling, R. (2013). mzMatch–ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics, 29(2), 281–283. https://doi.org/10.1093/bioinformatics/bts674 .
doi: 10.1093/bioinformatics/bts674 pubmed: 23162054
Chong, J., & Xia, J. (2018). MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics, 34(24), 4313–4314. https://doi.org/10.1093/bioinformatics/bty528 .
doi: 10.1093/bioinformatics/bty528 pubmed: 29955821 pmcid: 6289126
Chue Hong, N. P., Katz, D. S., Barker, M., Lamprecht, A. L., Martinez, C., Psomopoulos, F. E., Harrow, J., Castro, L. J., Gruenpeter, M., Martinez, P. A., Honeyman, T., Struck, A., Lee, A., Loewe, A., van Werkhoven, B., Jones, C., Garijo, D., Plomp, E., & Genova, F. (2022). … WG, R. F. FAIR Principles for Research Software (FAIR4RS Principles). https://doi.org/10.15497/RDA00068
Clasquin, M. F., Melamud, E., & Rabinowitz, J. D. (2012). LC-MS Data Processing with MAVEN: A Metabolomic Analysis and Visualization Engine. Current Protocols in Bioinformatics / Editoral Board, Andreas D. Baxevanis … et Al.], 0 14, Unit14.11. https://doi.org/10.1002/0471250953.bi1411s37
Considine, E. C., & Salek, R. M. (2019). A Tool to encourage Minimum Reporting Guideline Uptake for Data Analysis in Metabolomics. Metabolites, 9(3), E43. https://doi.org/10.3390/metabo9030043 .
doi: 10.3390/metabo9030043
Covidence—Better systematic review management. (n.d.). Covidence. Retrieved April 6, from https://www.covidence.org/
Creek, D. J., Jankevics, A., Burgess, K. E. V., Breitling, R., & Barrett, M. P. (2012). IDEOM: an Excel interface for analysis of LC-MS-based metabolomics data. Bioinformatics (Oxford England), 28(7), 1048–1049. https://doi.org/10.1093/bioinformatics/bts069 .
doi: 10.1093/bioinformatics/bts069 pubmed: 22308147
Davidson, R. L., Weber, R. J. M., Liu, H., Sharma-Oates, A., & Viant, M. R. (2016). Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data. GigaScience, 5(1), 10. https://doi.org/10.1186/s13742-016-0115-8 .
doi: 10.1186/s13742-016-0115-8 pubmed: 26913198 pmcid: 4765054
De Livera, A. M., Olshansky, G., Simpson, J. A., & Creek, D. J. (2018). NormalizeMets: assessing, selecting and implementing statistical methods for normalizing metabolomics data. Metabolomics, 14(5), 54. https://doi.org/10.1007/s11306-018-1347-7 .
doi: 10.1007/s11306-018-1347-7 pubmed: 30830328
De Vos, R. C., Moco, S., Lommen, A., Keurentjes, J. J., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2(4), https://doi.org/10.1038/nprot.2007.95 .
Decan, A., Mens, T., Claes, M., & Grosjean, P. (2015). On the Development and Distribution of R Packages: An Empirical Analysis of the R Ecosystem. Proceedings of the 2015 European Conference on Software Architecture Workshops, 1–6. https://doi.org/10.1145/2797433.2797476
DeFelice, B. C., Mehta, S. S., Samra, S., Čajka, T., Wancewicz, B., Fahrmann, J. F., & Fiehn, O. (2017). Mass Spectral feature list optimizer (MS-FLO): a Tool to minimize false positive peak reports in untargeted liquid Chromatography–Mass Spectroscopy (LC-MS) data Processing. Analytical Chemistry, 89(6), 3250–3255. https://doi.org/10.1021/acs.analchem.6b04372 .
doi: 10.1021/acs.analchem.6b04372 pubmed: 28225594 pmcid: 7334838
Del Carratore, F., Schmidt, K., Vinaixa, M., Hollywood, K. A., Greenland-Bews, C., Takano, E., Rogers, S., & Breitling, R. (2019). Integrated Probabilistic Annotation: a bayesian-based annotation method for metabolomic profiles integrating biochemical connections, isotope patterns, and Adduct Relationships. Analytical Chemistry, 91(20), 12799–12807. https://doi.org/10.1021/acs.analchem.9b02354 .
doi: 10.1021/acs.analchem.9b02354 pubmed: 31509381
Directorate-General for Research and Innovation (European Commission). (2018). Turning FAIR into reality: final report and action plan from the European Commission expert group on FAIR data. Publications Office of the European Union. https://doi.org/10.2777/1524 .
Du, X., Aristizabal-Henao, J. J., Garrett, T. J., Brochhausen, M., Hogan, W. R., & Lemas, D. J. (2022). A checklist for reproducible computational analysis in clinical Metabolomics Research. Metabolites, 12(1), https://doi.org/10.3390/metabo12010087 .
Dührkop, K., Fleischauer, M., Ludwig, M., Aksenov, A. A., Melnik, A. V., Meusel, M., Dorrestein, P. C., Rousu, J., & Böcker, S. (2019). SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nature Methods, 16(4), https://doi.org/10.1038/s41592-019-0344-8 . Article 4.
Fiehn, O., Sumner, L. W., Rhee, S. Y., Ward, J., Dickerson, J., Lange, B. M., Lane, G., Roessner, U., Last, R., & Nikolau, B. (2007). Minimum reporting standards for plant biology context information in metabolomic studies. Metabolomics, 3(3), 195–201. https://doi.org/10.1007/s11306-007-0068-0 .
doi: 10.1007/s11306-007-0068-0
fillPeaks-methods: Integrate areas of missing peaks in xcms: LC-MS and GC-MS Data Analysis. (n.d.). Retrieved April 6, from https://rdrr.io/bioc/xcms/man/fillPeaks-methods.html
Fischer, D., Panse, C., & Laczko, E. (2022). cosmiq: Cosmiq - COmbining Single Masses Into Quantities (1.28.0). Bioconductor version: Release (3.14). https://doi.org/10.18129/B9.bioc.cosmiq
Franceschi, P., Mylonas, R., Shahaf, N., Scholz, M., Arapitsas, P., Masuero, D., Weingart, G., Carlin, S., Vrhovsek, U., Mattivi, F., & Wehrens, R. (2014). MetaDB a Data Processing Workflow in untargeted MS-Based Metabolomics experiments. Frontiers in Bioengineering and Biotechnology, 2, 72. https://doi.org/10.3389/fbioe.2014.00072 .
doi: 10.3389/fbioe.2014.00072 pubmed: 25566535 pmcid: 4267269
Gatto, L., Gibb, S., & Rainer, J. (2021). MSnbase, efficient and elegant R-Based Processing and visualization of raw Mass Spectrometry Data. Journal of Proteome Research, 20(1), 1063–1069. https://doi.org/10.1021/acs.jproteome.0c00313 .
doi: 10.1021/acs.jproteome.0c00313 pubmed: 32902283
Georgeson, P., Syme, A., Sloggett, C., Chung, J., Dashnow, H., Milton, M., Lonsdale, A., Powell, D., Seemann, T., & Pope, B. (2019). Bionitio: demonstrating and facilitating best practices for bioinformatics command-line software. GigaScience, 8, giz109. https://doi.org/10.1093/gigascience/giz109 .
doi: 10.1093/gigascience/giz109 pubmed: 31544213 pmcid: 6755254
Giacomoni, F., Le Corguillé, G., Monsoor, M., Landi, M., Pericard, P., Pétéra, M., Duperier, C., Tremblay-Franco, M., Martin, J. F., Jacob, D., Goulitquer, S., Thévenot, E. A., & Caron, C. (2015). Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics, 31(9), 1493–1495. https://doi.org/10.1093/bioinformatics/btu813 .
doi: 10.1093/bioinformatics/btu813 pubmed: 25527831
Goodacre, R., Broadhurst, D., Smilde, A. K., Kristal, B. S., Baker, J. D., Beger, R., Bessant, C., Connor, S., Capuani, G., Craig, A., Ebbels, T., Kell, D. B., Manetti, C., Newton, J., Paternostro, G., Somorjai, R., Sjöström, M., Trygg, J., & Wulfert, F. (2007). Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics, 3(3), 231–241. https://doi.org/10.1007/s11306-007-0081-3 .
doi: 10.1007/s11306-007-0081-3
Goodman, S. N., Fanelli, D., & Ioannidis, J. P. A. (2016). What does research reproducibility mean? Science Translational Medicine, 8(341), 341ps12-341ps12.
Guo, J., Shen, S., Xing, S., & Huan, T. (2021). DaDIA: Hybridizing Data-Dependent and Data-Independent Acquisition Modes for Generating High-Quality Metabolomic Data.Analytical Chemistry, 93(4),2669–2677. https://doi.org/10.1021/acs.analchem.0c05022
Hao, L., Wang, J., Page, D., Asthana, S., Zetterberg, H., Carlsson, C., Okonkwo, O. C., & Li, L. (2018). Comparative evaluation of MS-based Metabolomics Software and its application to preclinical Alzheimer’s Disease. Scientific Reports, 8(1), https://doi.org/10.1038/s41598-018-27031-x .
Hasselbring, W., Carr, L., Hettrick, S., Packer, H., & Tiropanis, T. (2020). From FAIR research data toward FAIR and open research software. It - Information Technology, 62(1), 39–47. https://doi.org/10.1515/itit-2019-0040 .
doi: 10.1515/itit-2019-0040
Heil, B. J., Hoffman, M. M., Markowetz, F., Lee, S. I., Greene, C. S., & Hicks, S. C. (2021). Reproducibility standards for machine learning in the life sciences. Nature Methods, 18(10), 1132–1135. https://doi.org/10.1038/s41592-021-01256-7 .
doi: 10.1038/s41592-021-01256-7 pubmed: 34462593 pmcid: 9131851
Helmus, R., ter Laak, T. L., van Wezel, A. P., de Voogt, P., & Schymanski, E. L. (2021). patRoon: open source software platform for environmental mass spectrometry based non-target screening. Journal of Cheminformatics, 13(1), 1. https://doi.org/10.1186/s13321-020-00477-w .
doi: 10.1186/s13321-020-00477-w pubmed: 33407901 pmcid: 7789171
Huan, T., & Li, L. (2015a). Counting missing values in a metabolite-intensity data set for measuring the analytical performance of a metabolomics platform. Analytical Chemistry, 87(2), 1306–1313. https://doi.org/10.1021/ac5039994 .
doi: 10.1021/ac5039994 pubmed: 25496403
Huan, T., & Li, L. (2015b). Quantitative metabolome analysis based on Chromatographic Peak Reconstruction in Chemical isotope labeling liquid chromatography Mass Spectrometry. Analytical Chemistry, 87(14), 7011–7016. https://doi.org/10.1021/acs.analchem.5b01434 .
doi: 10.1021/acs.analchem.5b01434 pubmed: 26086729
Huang, X., Chen, Y. J., Cho, K., Nikolskiy, I., Crawford, P. A., & Patti, G. J. (2014). X13CMS: Global Tracking of Isotopic Labels in untargeted metabolomics. Analytical Chemistry, 86(3), 1632–1639. https://doi.org/10.1021/ac403384n .
doi: 10.1021/ac403384n pubmed: 24397582 pmcid: 3982964
Huber, C., Nijssen, R., Mol, H., Philippe Antignac, J., Krauss, M., Brack, W., Wagner, K., Debrauwer, L., Vitale, M., Price, C. J., Klanova, E., Molina, J. G., Leon, B., Pardo, N., Fernández, O., Szigeti, S. F., Középesy, T., Šulc, S., Čupr, L., & Lommen, P., A (2022). A large scale multi-laboratory suspect screening of pesticide metabolites in human biomonitoring: from tentative annotations to verified occurrences. Environment International, 168, 107452. https://doi.org/10.1016/j.envint.2022.107452 .
doi: 10.1016/j.envint.2022.107452 pubmed: 35994799
Huber, F., Ridder, L., Verhoeven, S., Spaaks, J. H., Diblen, F., Rogers, S., & van der Hooft, J. J. J. (2021). Spec2Vec: improved mass spectral similarity scoring through learning of structural relationships. PLOS Computational Biology, 17(2), e1008724. https://doi.org/10.1371/journal.pcbi.1008724 .
doi: 10.1371/journal.pcbi.1008724 pubmed: 33591968 pmcid: 7909622
Huber, F., van der Burg, S., van der Hooft, J. J. J., & Ridder, L. (2021). MS2DeepScore: a novel deep learning similarity measure to compare tandem mass spectra. Journal of Cheminformatics, 13(1), 84. https://doi.org/10.1186/s13321-021-00558-4 .
doi: 10.1186/s13321-021-00558-4 pubmed: 34715914 pmcid: 8556919
Hughes, G., Cruickshank-Quinn, C., Reisdorph, R., Lutz, S., Petrache, I., Reisdorph, N., Bowler, R., & Kechris, K. (2014). MSPrep—Summarization, normalization and diagnostics for processing of mass spectrometry–based metabolomic data. Bioinformatics, 30(1), 133–134. https://doi.org/10.1093/bioinformatics/btt589 .
doi: 10.1093/bioinformatics/btt589 pubmed: 24174567
Hunter-Zinck, H., de Siqueira, A. F., Vásquez, V. N., Barnes, R., & Martinez, C. C. (2021). Ten simple rules on writing clean and reliable open-source scientific software. PLOS Computational Biology, 17(11), e1009481. https://doi.org/10.1371/journal.pcbi.1009481 .
doi: 10.1371/journal.pcbi.1009481 pubmed: 34762641 pmcid: 8584773
Ison, J., Ienasescu, H., Chmura, P., Rydza, E., Ménager, H., Kalaš, M., Schwämmle, V., Grüning, B., Beard, N., Lopez, R., Duvaud, S., Stockinger, H., Persson, B., Vařeková, R. S., Raček, T., Vondrášek, J., Peterson, H., Salumets, A., Jonassen, I., & Brunak, S. (2019). The bio.tools registry of software tools and data resources for the life sciences. Genome Biology, 20(1), 164. https://doi.org/10.1186/s13059-019-1772-6 .
doi: 10.1186/s13059-019-1772-6 pubmed: 31405382 pmcid: 6691543
Jaitly, N., Mayampurath, A., Littlefield, K., Adkins, J. N., Anderson, G. A., & Smith, R. D. (2009). Decon2LS: an open-source software package for automated processing and visualization of high resolution mass spectrometry data. Bmc Bioinformatics, 10(1), 87. https://doi.org/10.1186/1471-2105-10-87 .
doi: 10.1186/1471-2105-10-87 pubmed: 19292916 pmcid: 2666663
Ji, H., Xu, Y., Lu, H., & Zhang, Z. (2019). Deep MS/MS-Aided structural-similarity scoring for unknown metabolite identification. Analytical Chemistry, 91(9), 5629–5637. https://doi.org/10.1021/acs.analchem.8b05405 .
doi: 10.1021/acs.analchem.8b05405 pubmed: 30990670
Ji, H., Zeng, F., Xu, Y., Lu, H., & Zhang, Z. (2017). KPIC2: an effective Framework for Mass Spectrometry-Based Metabolomics using pure Ion Chromatograms. Analytical Chemistry, 89(14), 7631–7640. https://doi.org/10.1021/acs.analchem.7b01547 .
doi: 10.1021/acs.analchem.7b01547 pubmed: 28621925
Jiménez, R. C., Kuzak, M., Alhamdoosh, M., Barker, M., Batut, B., Borg, M., Capella-Gutierrez, S., Chue Hong, N., Cook, M., Corpas, M., Flannery, M., Garcia, L., Gelpí, J. L., Gladman, S., Goble, C., González Ferreiro, M., Gonzalez-Beltran, A., Griffin, P. C., Grüning, B., & Crouch, S. (2017). Four simple recommendations to encourage best practices in research software. F1000Research, 6, ELIXIR-876. https://doi.org/10.12688/f1000research.11407.1
de Jonge, N. F., Louwen, J. R., Chekmeneva, E., Camuzeaux, S., Vermeir, F. J., Jansen, R. S., Huber, F., & van der Hooft, J. J. J. (2022). MS2Query: Reliable and Scalable MS2 Mass Spectral-based Analogue Search (p. 2022.07.22.501125). bioRxiv. https://doi.org/10.1101/2022.07.22.501125
Kantz, E. D., Tiwari, S., Watrous, J. D., Cheng, S., & Jain, M. (2019). Deep neural networks for classification of LC-MS spectral peaks. Analytical Chemistry, 91(19), 12407–12413. https://doi.org/10.1021/acs.analchem.9b02983 .
doi: 10.1021/acs.analchem.9b02983 pubmed: 31483992 pmcid: 7089603
Karimzadeh, M., & Hoffman, M. M. (2018). Top considerations for creating bioinformatics software documentation. Briefings in Bioinformatics, 19(4), 693–699. https://doi.org/10.1093/bib/bbw134 .
doi: 10.1093/bib/bbw134 pubmed: 28088754
Kasalica, V., Schwämmle, V., Palmblad, M., Ison, J., & Lamprecht, A. L. (2021). APE in the Wild: Automated Exploration of Proteomics Workflows in the bio.tools Registry. Journal of Proteome Research, 20(4), 2157–2165. https://doi.org/10.1021/acs.jproteome.0c00983 .
doi: 10.1021/acs.jproteome.0c00983 pubmed: 33720735 pmcid: 8041394
Katz, D. S., Barker, M., Chue Hong, N. P., Castro, L. J., & Martinez, P. A. (2021, June 28). The FAIR4RS team: Working together to make research software FAIR. 2021 Collegeville Workshop on Scientific Software - Software Teams (Collegeville2021). Zenodo. https://doi.org/10.5281/zenodo.5037157
Katz, D. S., Gruenpeter, M., & Honeyman, T. (2021). Taking a fresh look at FAIR for research software. Patterns, 2(3), 100222. https://doi.org/10.1016/j.patter.2021.100222 .
doi: 10.1016/j.patter.2021.100222 pubmed: 33748799 pmcid: 7961177
Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R., & Neumann, S. (2012). CAMERA: an Integrated strategy for compound Spectra extraction and annotation of Liquid Chromatography/Mass Spectrometry Data Sets. Analytical Chemistry, 84(1), 283–289. https://doi.org/10.1021/ac202450g .
doi: 10.1021/ac202450g pubmed: 22111785
Kutuzova, S., Colaianni, P., Röst, H., Sachsenberg, T., Alka, O., Kohlbacher, O., Burla, B., Torta, F., Schrübbers, L., Kristensen, M., Nielsen, L., Herrgård, M. J., & McCloskey, D. (2020). SmartPeak automates targeted and quantitative Metabolomics Data Processing. Analytical Chemistry, 92(24), 15968–15974. https://doi.org/10.1021/acs.analchem.0c03421
doi: 10.1021/acs.analchem.0c03421 pubmed: 33269929
Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del Pico,E., Dominguez Del Angel, V., van de Sandt, S., Ison, J., Martinez, P. A., McQuilton,P., Valencia, A., Harrow, J., Psomopoulos, F., Gelpi, J. L., Chue Hong, N., Goble,C., & Capella-Gutierrez, S. (2020). Towards FAIR principles for research software.Data Science, 3(1), 37–59. https://doi.org/10.3233/DS-190026
Lamprecht, A. L., Palmblad, M., Ison, J., Schwämmle, V., Manir, M. S. A., Altintas, I., Baker, C. J. O., Amor, A. B. H., Capella-Gutierrez, S., Charonyktakis, P., Crusoe, M. R., Gil, Y., Goble, C., Griffin, T. J., Groth, P., Ienasescu, H., Jagtap, P., Kalaš, M., Kasalica, V., & Wolstencroft, K. (2021). Perspectives on automated composition of workflows in the life sciences (10:897). F1000Research. https://doi.org/10.12688/f1000research.54159.1
Lee, B. D. (2018). Ten simple rules for documenting scientific software. PLOS Computational Biology, 14(12), e1006561. https://doi.org/10.1371/journal.pcbi.1006561 .
doi: 10.1371/journal.pcbi.1006561 pubmed: 30571677 pmcid: 6301674
Leprevost, F. V., Barbosa, V. C., Francisco, E. L., Perez-Riverol, Y., & Carvalho, P. C. (2014). On best practices in the development of bioinformatics software. Frontiers in Genetics, 5, 199. https://doi.org/10.3389/fgene.2014.00199 .
doi: 10.3389/fgene.2014.00199 pubmed: 25071829 pmcid: 4078907
Li, B., Tang, J., Yang, Q., Li, S., Cui, X., Li, Y., Chen, Y., Xue, W., Li, X., & Zhu, F. (2017). NOREVA: normalization and evaluation of MS-based metabolomics data. Nucleic Acids Research, 45(W1), W162–W170. https://doi.org/10.1093/nar/gkx449 .
doi: 10.1093/nar/gkx449 pubmed: 28525573 pmcid: 5570188
Li, Z., Lu, Y., Guo, Y., Cao, H., Wang, Q., & Shui, W. (2018). Comprehensive evaluation of untargeted metabolomics data processing software in feature detection, quantification and discriminating marker selection. Analytica Chimica Acta, 1029, 50–57. https://doi.org/10.1016/j.aca.2018.05.001 .
doi: 10.1016/j.aca.2018.05.001 pubmed: 29907290
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. Bmj, 339, b2700. https://doi.org/10.1136/bmj.b2700 .
doi: 10.1136/bmj.b2700 pubmed: 19622552 pmcid: 2714672
Libiseller, G., Dvorzak, M., Kleb, U., Gander, E., Eisenberg, T., Madeo, F., Neumann, S., Trausinger, G., Sinner, F., Pieber, T., & Magnes, C. (2015). IPO: a tool for automated optimization of XCMS parameters. Bmc Bioinformatics, 16(1), 118. https://doi.org/10.1186/s12859-015-0562-8 .
doi: 10.1186/s12859-015-0562-8 pubmed: 25888443 pmcid: 4404568
Liggi, S., Hinz, C., Hall, Z., Santoru, M. L., Poddighe, S., Fjeldsted, J., Atzori, L., & Griffin, J. L. (2018). KniMet: a pipeline for the processing of chromatography–mass spectrometry metabolomics data. Metabolomics, 14(4), 52. https://doi.org/10.1007/s11306-018-1349-5 .
doi: 10.1007/s11306-018-1349-5 pubmed: 29576760 pmcid: 5856871
Liu, Q., Walker, D., Uppal, K., Liu, Z., Ma, C., Tran, V., Li, S., Jones, D. P., & Yu, T. (2020). Addressing the batch effect issue for LC/MS metabolomics data in data preprocessing. Scientific Reports, 10(1), 13856. https://doi.org/10.1038/s41598-020-70850-0 .
doi: 10.1038/s41598-020-70850-0 pubmed: 32807888 pmcid: 7431853
Lommen, A. (2009). MetAlign: Interface-Driven, Versatile Metabolomics Tool for Hyphenated full-scan Mass Spectrometry Data Preprocessing. Analytical Chemistry, 81(8), 3079–3086. https://doi.org/10.1021/ac900036d .
doi: 10.1021/ac900036d pubmed: 19301908
Loos, M. (2016). enviPick: Peak Picking for High Resolution Mass Spectrometry Data (1.5). https://CRAN.R-project.org/package=enviPick
Mahieu, N. G., Spalding, J. L., & Patti, G. J. (2016). Warpgroup: increased precision of metabolomic data processing by consensus integration bound analysis. Bioinformatics, 32(2), 268–275. https://doi.org/10.1093/bioinformatics/btv564 .
doi: 10.1093/bioinformatics/btv564 pubmed: 26424859
Malone, J., Brown, A., Lister, A. L., Ison, J., Hull, D., Parkinson, H., & Stevens, R. (2014). The Software Ontology (SWO): a resource for reproducibility in biomedical data analysis, curation and digital preservation. Journal of Biomedical Semantics, 5(1), 25. https://doi.org/10.1186/2041-1480-5-25 .
doi: 10.1186/2041-1480-5-25 pubmed: 25068035 pmcid: 4098953
Mayer, G., Montecchi-Palazzi, L., Ovelleiro, D., Jones, A. R., Binz, P. A., Deutsch, E. W., Chambers, M., Kallhardt, M., Levander, F., Shofstahl, J., Orchard, S., Vizcaíno, J. A., Hermjakob, H., Stephan, C., Meyer, H. E., Eisenacher, M., & HUPO-PSI Group. (2013). &. The HUPO proteomics standards initiative- mass spectrometry controlled vocabulary. Database: The Journal of Biological Databases and Curation, 2013, bat009. https://doi.org/10.1093/database/bat009
Mayer, G., Müller, W., Schork, K., Uszkoreit, J., Weidemann, A., Wittig, U., Rey, M., Quast, C., Felden, J., Glöckner, F. O., Lange, M., Arend, D., Beier, S., Junker, A., Scholz, U., Schüler, D., Kestler, H. A., Wibberg, D., Pühler, A., & Turewicz, M. (2021). Implementing FAIR data management within the German Network for Bioinformatics infrastructure (de.NBI) exemplified by selected use cases. Briefings in Bioinformatics, 22(5), bbab010. https://doi.org/10.1093/bib/bbab010 .
doi: 10.1093/bib/bbab010 pubmed: 33589928 pmcid: 8425304
Mendez, K. M., Pritchard, L., Reinke, S. N., & Broadhurst, D. I. (2019). Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computing. Metabolomics, 15(10), 125. https://doi.org/10.1007/s11306-019-1588-0 .
doi: 10.1007/s11306-019-1588-0 pubmed: 31522294 pmcid: 6745024
Menke, J., Roelandse, M., Ozyurt, B., Martone, M., & Bandrowski, A. (2020). The rigor and transparency Index Quality Metric for assessing Biological and Medical Science Methods. IScience, 23(11), 101698. https://doi.org/10.1016/j.isci.2020.101698 .
doi: 10.1016/j.isci.2020.101698 pubmed: 33196023 pmcid: 7644557
Misra, B. B. (2018). New tools and resources in metabolomics: 2016–2017. ELECTROPHORESIS, 39(7), 909–923. https://doi.org/10.1002/elps.201700441 .
doi: 10.1002/elps.201700441 pubmed: 29292835
Misra, B. B. (2021). New software tools, databases, and resources in metabolomics: updates from 2020. Metabolomics, 17(5), 49. https://doi.org/10.1007/s11306-021-01796-1 .
doi: 10.1007/s11306-021-01796-1 pubmed: 33977389 pmcid: 8112213
Misra, B. B., Fahrmann, J. F., & Grapov, D. (2017). Review of emerging metabolomic tools and resources: 2015–2016. ELECTROPHORESIS, 38(18), 2257–2274. https://doi.org/10.1002/elps.201700110 .
doi: 10.1002/elps.201700110 pubmed: 28621886
Misra, B. B., & Mohapatra, S. (2019). Tools and resources for metabolomics research community: a 2017–2018 update. ELECTROPHORESIS, 40(2), 227–246. https://doi.org/10.1002/elps.201800428 .
doi: 10.1002/elps.201800428 pubmed: 30443919
Müller, E., Huber, C. E., Brack, W., Krauss, M., & Schulze, T. (2020). Symbolic aggregate approximation improves gap filling in high-resolution Mass Spectrometry Data Processing. Analytical Chemistry, 92(15), 10425–10432. https://doi.org/10.1021/acs.analchem.0c00899 .
doi: 10.1021/acs.analchem.0c00899 pubmed: 32786516
Olivon, F., Elie, N., Grelier, G., Roussi, F., Litaudon, M., & Touboul, D. (2018). MetGem Software for the generation of Molecular Networks based on the t-SNE algorithm. Analytical Chemistry, 90(23), 13900–13908. https://doi.org/10.1021/acs.analchem.8b03099 .
doi: 10.1021/acs.analchem.8b03099 pubmed: 30335965
O’Shea, K., & Misra, B. B. (2020). Software tools, databases and resources in metabolomics: updates from 2018 to 2019. Metabolomics, 16(3), 36. https://doi.org/10.1007/s11306-020-01657-3 .
doi: 10.1007/s11306-020-01657-3 pubmed: 32146531
Palarea-Albaladejo, J., Mclean, K., Wright, F., & Smith, D. G. E. (2018). MALDIrppa: quality control and robust analysis for mass spectrometry data. Bioinformatics, 34(3), 522–523. https://doi.org/10.1093/bioinformatics/btx628 .
doi: 10.1093/bioinformatics/btx628 pubmed: 29028890
Palmblad, M., Lamprecht, A. L., Ison, J., & Schwämmle, V. (2019). Automated workflow composition in mass spectrometry-based proteomics. Bioinformatics, 35(4), 656–664. https://doi.org/10.1093/bioinformatics/bty646 .
doi: 10.1093/bioinformatics/bty646 pubmed: 30060113
Pang, Z., Chong, J., Zhou, G., de Lima Morais, D. A., Chang, L., Barrette, M., Gauthier, C., Jacques, P., Li, S., & Xia, J. (2021). MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Research, 49(W1), W388–W396. https://doi.org/10.1093/nar/gkab382 .
doi: 10.1093/nar/gkab382 pubmed: 34019663 pmcid: 8265181
Pluskal, T., Castillo, S., Villar-Briones, A., & Orešič, M. (2010). MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. Bmc Bioinformatics, 11(1), 395. https://doi.org/10.1186/1471-2105-11-395 .
doi: 10.1186/1471-2105-11-395 pubmed: 20650010 pmcid: 2918584
Protsyuk, I., Melnik, A. V., Nothias, L. F., Rappez, L., Phapale, P., Aksenov, A. A., Bouslimani, A., Ryazanov, S., Dorrestein, P. C., & Alexandrov, T. (2018). 3D molecular cartography using LC-MS facilitated by Optimus and ’ili software. Nature Protocols, 13(1), 134–154. https://doi.org/10.1038/nprot.2017.122 .
doi: 10.1038/nprot.2017.122 pubmed: 29266099
Rainer, J., Vicini, A., Salzer, L., Stanstrup, J., Badia, J. M., Neumann, S., Stravs, M. A., Hernandes, V., Gatto, V., Gibb, L., S., & Witting, M. (2022). A modular and expandable ecosystem for Metabolomics Data Annotation in R. Metabolites, 12(2), https://doi.org/10.3390/metabo12020173 . Article 2.
Ram, K. (2013). Git can facilitate greater reproducibility and increased transparency in science. Source Code for Biology and Medicine, 8(1), 7. https://doi.org/10.1186/1751-0473-8-7 .
doi: 10.1186/1751-0473-8-7 pubmed: 23448176 pmcid: 3639880
Referencing and citing content. (n.d.). GitHub Docs. Retrieved December 30, from https://ghdocs-prod.azurewebsites.net/en/repositories/archiving-a-github-repository/referencing-and-citing-content
Review checklist—JOSS documentation. (n.d.). Retrieved April 28, from https://joss.readthedocs.io/en/latest/review_checklist.html
RforMassSpectrometry. (n.d.). Retrieved January 14, from https://www.rformassspectrometry.org/
Ridder, L., van der Hooft, J. J. J., Verhoeven, S., de Vos, R. C. H., van Schaik, R., & Vervoort, J. (2012). Substructure-based annotation of high-resolution multistage MSn spectral trees. Rapid Communications in Mass Spectrometry, 26(20), 2461–2471. https://doi.org/10.1002/rcm.6364 .
doi: 10.1002/rcm.6364 pubmed: 22976213
Rocca-Serra, P., & Sansone, S. A. (2019). Experiment design driven FAIRification of omics data matrices, an exemplar. Scientific Data, 6(1), https://doi.org/10.1038/s41597-019-0286-0 .
Romano, J. D., & Moore, J. H. (2020). Ten simple rules for writing a paper about scientific software. PLOS Computational Biology, 16(11), e1008390. https://doi.org/10.1371/journal.pcbi.1008390 .
doi: 10.1371/journal.pcbi.1008390 pubmed: 33180774 pmcid: 7660560
Ross, D. H., Cho, J. H., Zhang, R., Hines, K. M., & Xu, L. (2020). LiPydomics: a Python Package for Comprehensive Prediction of lipid Collision Cross sections and Retention Times and Analysis of Ion Mobility-Mass Spectrometry-Based Lipidomics Data. Analytical Chemistry, 92(22), 14967–14975. https://doi.org/10.1021/acs.analchem.0c02560 .
doi: 10.1021/acs.analchem.0c02560 pubmed: 33119270 pmcid: 7816765
Röst, H. L., Sachsenberg, T., Aiche, S., Bielow, C., Weisser, H., Aicheler, F., Andreotti, S., Ehrlich, H. C., Gutenbrunner, P., Kenar, E., Liang, X., Nahnsen, S., Nilse, L., Pfeuffer, J., Rosenberger, G., Rurik, M., Schmitt, U., Veit, J., Walzer, M., & Kohlbacher, O. (2016). OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nature Methods, 13(9), 741–748. https://doi.org/10.1038/nmeth.3959 .
doi: 10.1038/nmeth.3959 pubmed: 27575624
Ruttkies, C., Schymanski, E. L., Wolf, S., Hollender, J., & Neumann, S. (2016). MetFrag relaunched: incorporating strategies beyond in silico fragmentation. Journal of Cheminformatics, 8(1), 3. https://doi.org/10.1186/s13321-016-0115-9 .
doi: 10.1186/s13321-016-0115-9 pubmed: 26834843 pmcid: 4732001
Savoi, S., Arapitsas, P., Duchêne, É., Nikolantonaki, M., Ontañón, I., Carlin, S., Schwander, F., Gougeon, R. D., Ferreira, A. C. S., Theodoridis, G., Töpfer, R., Vrhovsek, U., Adam-Blondon, A. F., Pezzotti, M., & Mattivi, F. (2021). Grapevine and wine metabolomics-based guidelines for FAIR data and Metadata Management. Metabolites, 11(11), 757. https://doi.org/10.3390/metabo11110757 .
doi: 10.3390/metabo11110757 pubmed: 34822415 pmcid: 8618349
Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864 .
doi: 10.1213/ANE.0000000000002864
Seemann, T. (2013). Ten recommendations for creating usable bioinformatics command line software. GigaScience, 2(1), 15. https://doi.org/10.1186/2047-217X-2-15 .
doi: 10.1186/2047-217X-2-15 pubmed: 24225083 pmcid: 4076505
Senington, R., Pataki, B., & Wang, X. V. (2018). Using docker for factory system software management: experience report. Procedia CIRP, 72, 659–664. https://doi.org/10.1016/j.procir.2018.03.173 .
doi: 10.1016/j.procir.2018.03.173
Shen, X., Wang, R., Xiong, X., Yin, Y., Cai, Y., Ma, Z., Liu, N., & Zhu, Z. J. (2019). Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nature Communications, 10(1), https://doi.org/10.1038/s41467-019-09550-x .
Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). Matching, and Identification. Analytical Chemistry, 78(3), 779–787. https://doi.org/10.1021/ac051437y . XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment,.
Snyder, M., Mias, G., Stanberry, L., & Kolker, E. (2014). Metadata Checklist for the Integrated Personal OMICS Study: Proteomics and Metabolomics experiments. OMICS: A Journal of Integrative Biology, 18(1), 81–85. https://doi.org/10.1089/omi.2013.0148 .
doi: 10.1089/omi.2013.0148 pubmed: 24456466
Spicer, R., Salek, R. M., Moreno, P., Cañueto, D., & Steinbeck, C. (2017). Navigating freely-available software tools for metabolomics analysis. Metabolomics: Official Journal of the Metabolomic Society, 13(9), 106. https://doi.org/10.1007/s11306-017-1242-7 .
doi: 10.1007/s11306-017-1242-7 pubmed: 28890673
Stanstrup, J., Broeckling, C. D., Helmus, R., Hoffmann, N., Mathé, E., Naake, T., Nicolotti, L., Peters, K., Rainer, J., Salek, R. M., Schulze, T., Schymanski, E. L., Stravs, M. A., Thévenot, E. A., Treutler, H., Weber, R. J. M., Willighagen, E., Witting, M., & Neumann, S. (2019). The metaRbolomics Toolbox in Bioconductor and beyond. Metabolites, 9(10), https://doi.org/10.3390/metabo9100200 . Article 10.
Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W. M., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., Marriott, P., Nicholls, A. W., & Viant, M. R. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics: Official Journal of the Metabolomic Society, 3(3), 211–221. https://doi.org/10.1007/s11306-007-0082-2 .
doi: 10.1007/s11306-007-0082-2 pubmed: 24039616
Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS Online: a web-based platform to process untargeted metabolomic data. Analytical Chemistry, 84(11), 5035–5039. https://doi.org/10.1021/ac300698c .
doi: 10.1021/ac300698c pubmed: 22533540 pmcid: 3703953
Teo, G., Chew, W. S., Burla, B. J., Herr, D., Tai, E. S., Wenk, M. R., Torta, F., & Choi, H. (2020). MRMkit: Automated Data Processing for large-scale targeted Metabolomics Analysis. Analytical Chemistry, 92(20), 13677–13682. https://doi.org/10.1021/acs.analchem.0c03060 .
doi: 10.1021/acs.analchem.0c03060 pubmed: 32930575
Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., Kanazawa, M., VanderGheynst, J., Fiehn, O., & Arita, M. (2015). MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods, 12(6), 523–526. https://doi.org/10.1038/nmeth.3393 .
doi: 10.1038/nmeth.3393 pubmed: 25938372 pmcid: 4449330
Tsugawa, H., Kind, T., Nakabayashi, R., Yukihira, D., Tanaka, W., Cajka, T., Saito, K., Fiehn, O., & Arita, M. (2016). Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER Software. Analytical Chemistry, 88(16), 7946–7958. https://doi.org/10.1021/acs.analchem.6b00770 .
doi: 10.1021/acs.analchem.6b00770 pubmed: 27419259 pmcid: 7063832
Uppal, K., Soltow, Q. A., Strobel, F. H., Pittard, W. S., Gernert, K. M., Yu, T., & Jones, D. P. (2013). xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data. Bmc Bioinformatics, 14(1), 15. https://doi.org/10.1186/1471-2105-14-15 .
doi: 10.1186/1471-2105-14-15 pubmed: 23323971 pmcid: 3562220
Uppal, K., Walker, D. I., & Jones, D. P. (2017). xMSannotator: an R Package for Network-Based annotation of high-resolution Metabolomics Data. Analytical Chemistry, 89(2), 1063–1067. https://doi.org/10.1021/acs.analchem.6b01214 .
doi: 10.1021/acs.analchem.6b01214 pubmed: 27977166 pmcid: 5447360
van de Sandt, S., Nielsen, L. H., Ioannidis, A., Muench, A., Henneken, E., Accomazzi, A., Bigarella, C., Lopez, J. B. G., & Dallmeier-Tiessen, S. (2019). Practice meets Principle: Tracking Software and Data Citations to Zenodo DOIs (arXiv:1911.00295). arXiv. https://doi.org/10.48550/arXiv.1911.00295
Vesteghem, C., Brøndum, R. F., Sønderkær, M., Sommer, M., Schmitz, A., Bødker, J. S., Dybkær, K., El-Galaly, T. C., & Bøgsted, M. (2020). Implementing the FAIR Data Principles in precision oncology: review of supporting initiatives. Briefings in Bioinformatics, 21(3), 936–945. https://doi.org/10.1093/bib/bbz044 .
doi: 10.1093/bib/bbz044 pubmed: 31263868
Vitale, C. M., Lommen, A., Huber, C., Wagner, K., Garlito Molina, B., Nijssen, R., Price, E. J., Blokland, M., van Tricht, F., Mol, H. G. J., Krauss, M., Debrauwer, L., Pardo, O., Leon, N., Klanova, J., & Antignac, J. P. (2022). Harmonized Quality Assurance/Quality control provisions for nontargeted measurement of urinary pesticide biomarkers in the HBM4EU Multisite SPECIMEn Study. Analytical Chemistry, 94(22), 7833–7843. https://doi.org/10.1021/acs.analchem.2c00061 .
doi: 10.1021/acs.analchem.2c00061 pubmed: 35616234
Weber, R. J. M., & Viant, M. R. (2010). MI-Pack: increased confidence of metabolite identification in mass spectra by integrating accurate masses and metabolic pathways. Chemometrics and Intelligent Laboratory Systems, 104(1), 75–82. https://doi.org/10.1016/j.chemolab.2010.04.010 .
doi: 10.1016/j.chemolab.2010.04.010
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J. W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., & Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), Article 1. https://doi.org/10.1038/sdata.2016.18
Wilkinson, M. D., Dumontier, M., Sansone, S. A., Bonino da Silva Santos, L. O., Prieto, M., Batista, D., McQuilton, P., Kuhn, T., Rocca-Serra, P., Crosas, M., & Schultes, E. (2019). Evaluating FAIR maturity through a scalable, automated, community-governed framework. Scientific Data, 6(1), https://doi.org/10.1038/s41597-019-0184-5 .
Wolf, M., Logan, J., Mehta, K., Jacobson, D., Cashman, M., Walker, A. M., Eisenhauer, G., Widener, P., & Cliff, A. (2021). Reusability First: Toward FAIR Workflows. 2021 IEEE International Conference on Cluster Computing (CLUSTER), 444–455. https://doi.org/10.1109/Cluster48925.2021.00053
Yu, T., Park, Y., Johnson, J. M., & Jones, D. P. (2009). ApLCMS—adaptive processing of high-resolution LC/MS data. Bioinformatics, 25(15), 1930–1936. https://doi.org/10.1093/bioinformatics/btp291 .
doi: 10.1093/bioinformatics/btp291 pubmed: 19414529 pmcid: 2712336
Zhang, X., Li, Q., Xu, Z., & Dou, J. (2020). Mass spectrometry-based metabolomics in health and medical science: a systematic review. RSC Advances, 10(6), 3092–3104. https://doi.org/10.1039/C9RA08985C .
doi: 10.1039/C9RA08985C pubmed: 35497733 pmcid: 9048967
Zhao, J., Gómez-Pérez, J., Belhajjame, K., Klyne, G., García-Cuesta, E., Garrido, A., Hettne, K., Roos, M., Roure, D. D., & Goble, C. (2012). Why workflows break—Understanding and combating decay in Taverna workflows. 2012 IEEE 8th International Conference on E-Science. https://doi.org/10.1109/eScience.2012.6404482
Zheng, C. L., Ratnakar, V., Gil, Y., & McWeeney, S. K. (2015). Use of semantic workflows to enhance transparency and reproducibility in clinical omics. Genome Medicine, 7(1), 73. https://doi.org/10.1186/s13073-015-0202-y .
doi: 10.1186/s13073-015-0202-y pubmed: 26289940 pmcid: 4545705
Zhou, B., Xiao, J. F., Tuli, L., & Ressom, H. W. (2012). LC-MS-based metabolomics. Molecular BioSystems, 8(2), 470–481. https://doi.org/10.1039/c1mb05350g .
doi: 10.1039/c1mb05350g pubmed: 22041788
Zhou, R., Tseng, C. L., Huan, T., & Li, L. (2014). IsoMS: automated processing of LC-MS data generated by a chemical isotope labeling metabolomics platform. Analytical Chemistry, 86(10), 4675–4679. https://doi.org/10.1021/ac5009089 .
doi: 10.1021/ac5009089 pubmed: 24766305

Auteurs

Xinsong Du (X)

Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, USA.

Farhad Dastmalchi (F)

Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, USA.

Hao Ye (H)

Health Science Center Libraries, University of Florida, Florida, USA.

Timothy J Garrett (TJ)

Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Florida, USA.

Matthew A Diller (MA)

Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, USA.

Mei Liu (M)

Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, USA.

William R Hogan (WR)

Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, USA.

Mathias Brochhausen (M)

Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, USA.

Dominick J Lemas (DJ)

Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, USA. djlemas@ufl.edu.
Department of Obstetrics and Gynecology, University of Florida College of Medicine, Florida, Gainesville, United States. djlemas@ufl.edu.
Center for Perinatal Outcomes Research, University of Florida College of Medicine, Gainesville, United States. djlemas@ufl.edu.

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software
Cephalometry Humans Anatomic Landmarks Software Internet
Humans Algorithms Software Artificial Intelligence Computer Simulation

Classifications MeSH