Comprehensive Profiling of Secreted Factors in the Cerebrospinal Fluid of Moyamoya Disease Patients.

Cerebrospinal fluid Moyamoya disease Neuroinflammation Revascularization Stroke Surgical outcome

Journal

Translational stroke research
ISSN: 1868-601X
Titre abrégé: Transl Stroke Res
Pays: United States
ID NLM: 101517297

Informations de publication

Date de publication:
06 Feb 2023
Historique:
received: 23 11 2022
accepted: 30 01 2023
revised: 27 01 2023
pubmed: 7 2 2023
medline: 7 2 2023
entrez: 6 2 2023
Statut: aheadofprint

Résumé

Moyamoya disease (MMD) is characterized by progressive occlusion of the intracranial internal carotid arteries, leading to ischemic and hemorrhagic events. Significant clinical differences exist between ischemic and hemorrhagic MMD. To understand the molecular profiles in the cerebrospinal fluid (CSF) of MMD patients, we investigated 62 secreted factors in both MMD subtypes (ischemic and hemorrhagic) and examined their relationship with preoperative perfusion status, the extent of postoperative angiographic revascularization, and functional outcomes. Intraoperative CSF was collected from 32 control and 71 MMD patients (37 ischemic and 34 hemorrhagic). Multiplex Luminex assay analysis showed that 41 molecules were significantly elevated in both MMD subtypes when compared to controls, including platelet-derived growth factor-BB (PDGF-BB), plasminogen activator inhibitor 1 (PAI-1), and intercellular adhesion molecule 1 (ICAM1) (p < 0.001). Many of these secreted proteins have not been previously reported in MMD, including interleukins (IL-2, IL-4, IL-5, IL-7, IL-8, IL-9, IL-17, IL-18, IL-22, and IL-23) and C-X-C motif chemokines (CXCL1 and CXCL9). Pathway analysis indicated that both MMD subtypes exhibited similar cellular/molecular functions and pathways, including cellular activation, migration, and inflammatory response. While neuroinflammation and dendritic cell pathways were activated in MMD patients, lipid signaling pathways involving nuclear receptors, peroxisome proliferator-activated receptor (PPAR), and liver X receptors (LXR)/retinoid X receptors (RXR) signaling were inhibited. IL-13 and IL-2 were negatively correlated with preoperative cerebral perfusion status, while 7 factors were positively correlated with the extent of postoperative revascularization. These elevated cytokines, chemokines, and growth factors in CSF may contribute to the pathogenesis of MMD and represent potential future therapeutic targets.

Identifiants

pubmed: 36745304
doi: 10.1007/s12975-023-01135-7
pii: 10.1007/s12975-023-01135-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIH HHS
ID : R21NS082894
Pays : United States
Organisme : NIH HHS
ID : R21NS082894
Pays : United States
Organisme : NIH HHS
ID : R21NS082894
Pays : United States

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2023. The Author(s).

Références

Suzuki J, Takaku A. Cerebrovascular, “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969;20:288–99.
doi: 10.1001/archneur.1969.00480090076012 pubmed: 5775283
Scott RM, Smith ER. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009;360:1226–37 (Massachusetts Medical Society).
doi: 10.1056/NEJMra0804622 pubmed: 19297575
Nielsen TH, Abhinav K, Sussman ES, Han SS, Weng Y, Bell-Stephens T, et al. Direct versus indirect bypass procedure for the treatment of ischemic moyamoya disease: results of an individualized selection strategy. J Neurosurg. 2021;134:1578–89.
doi: 10.3171/2020.3.JNS192847
Miyamoto S, Yoshimoto T, Hashimoto N, Okada Y, Tsuji I, Tominaga T, et al. Effects of extracranial-intracranial bypass for patients with hemorrhagic moyamoya disease: results of the Japan Adult Moyamoya Trial. Stroke. 2014;45:1415–21.
doi: 10.1161/STROKEAHA.113.004386 pubmed: 24668203
Abhinav K, Furtado SV, Nielsen TH, Iyer A, Gooderham PA, Teo M, et al. Functional outcomes after revascularization procedures in patients with hemorrhagic moyamoya disease. Clin Neurosurg. 2020;86:257–65 (Oxford University Press).
doi: 10.1093/neuros/nyz074
Achrol AS, Guzman R, Lee M, Steinberg KG. Pathophysiology and genetic factors in moyamoya disease. Neurosurg Focus. 2009;26:1–6 (American Association of Neurological Surgeons).
doi: 10.3171/2009.1.FOCUS08302
Mertens R, Graupera M, Gerhardt H, Bersano A, Tournier-Lasserve E, Mensah MA, et al. The genetic basis of moyamoya disease. Transl Stroke Res. 2022;13:25–45.
doi: 10.1007/s12975-021-00940-2 pubmed: 34529262
Kamada F, Aoki Y, Narisawa A, Abe Y, Komatsuzaki S, Kikuchi A, et al. A genome-wide association study identifies RNF213 as the first moyamoya disease gene. J Hum Genet. 2011;56:34–40.
doi: 10.1038/jhg.2010.132 pubmed: 21048783
Liu W, Morito D, Takashima S, Mineharu Y, Kobayashi H, Hitomi T, et al. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One. 2011;6(7):e22542.
Shoemaker LD, Clark MJ, Patwardhan A, Chandratillake G, Garcia S, Chen R, et al. Disease variant landscape of a large multiethnic population of moyamoya patients by exome sequencing. G3 (Bethesda). 2015;6:41–9.
doi: 10.1534/g3.115.020321 pubmed: 26530418
Xiao Y, Liu W, Hao J, Jiang Q, Wang X, Yu D, et al. CRISPR detection and research on screening mutant gene TTN of moyamoya disease family based on whole exome sequencing. Front Mol Biosci. 2022;9:846579.
Kang HS, Kim JH, Phi JH, Kim YY, Kim JE, Wang KC, et al. Plasma matrix metalloproteinases, cytokines and angiogenic factors in moyamoya disease. J Neurol Neurosurg Psychiatry. 2010;81:673–8 (BMJ Publishing Group).
doi: 10.1136/jnnp.2009.191817 pubmed: 19965844
Bedini G, Blecharz KG, Nava S, Vajkoczy P, Alessandri G, Ranieri M, et al. Vasculogenic and angiogenic pathways in moyamoya disease. Curr Med Chem. 2016;23:315–45 (Bentham Science Publishers Ltd).
doi: 10.2174/092986732304160204181543 pubmed: 26861126
Yoshimoto T, Houkin K, Takahashi A, Abe H. Angiogenic factors in moyamoya disease. Stroke. 1996;27:2160–5 (Lippincott Williams and Wilkins).
doi: 10.1161/01.STR.27.12.2160 pubmed: 8969773
Nanba R, Kuroda S, Ishikawa T, Houkin K, Iwasaki Y. Increased expression of hepatocyte growth factor in cerebrospinal fluid and intracranial artery in moyamoya disease. Stroke. 2004;35:2837–42.
doi: 10.1161/01.STR.0000148237.13659.e6 pubmed: 15528455
Fujimura M, Watanabe M, Narisawa A, Shimizu H, Tominaga T. Increased expression of serum matrix metalloproteinase-9 in patients with moyamoya disease. Surg Neurol. 2009;72:476–80.
doi: 10.1016/j.surneu.2008.10.009 pubmed: 19147196
Houkin K, Yoshimoto T, Abe H, Nagashima K, Nagashima M, Takeda M, et al. Role of basic fibroblast growth factor in the pathogenesis of moyamoya disease. Neurosurg Focus. 1998;5:E4 (American Association of Neurological Surgeons).
doi: 10.3171/foc.1998.5.5.5
Takahashi A, Sawamura Y, Houkin K, Kamiyama H, Abe H. The cerebrospinal fluid in patients with moyamoya disease (spontaneous occlusion of the circle of Willis) contains high level of basic fibroblast growth factor. Neurosci Lett. 1993;160:214–6 (Elsevier).
doi: 10.1016/0304-3940(93)90416-I pubmed: 8247356
Kim SK, Yoo JIl, Cho BK, Hong SJ, Kim YK, Moon JA, et al. Elevation of CRABP-I in the cerebrospinal fluid of patients with moyamoya disease. Stroke. 2003;34:2835–41.
doi: 10.1161/01.STR.0000100159.43123.D7 pubmed: 14605320
Kashiwazaki D, Uchino H, Kuroda S. Downregulation of apolipoprotein-E and apolipoprotein-J in moyamoya disease—a proteome analysis of cerebrospinal fluid. J Stroke Cerebrovasc Dis. 2017;26:2981–7 (W.B. Saunders).
doi: 10.1016/j.jstrokecerebrovasdis.2017.07.028 pubmed: 28843803
Vagal AS, Leach JL, Fernandez-Ulloa M, Zuccarello M. The acetazolamide challenge: techniques and applications in the evaluation of chronic cerebral ischemia. Am J Neuroradiol. 2009;30:876–84 (American Journal of Neuroradiology).
doi: 10.3174/ajnr.A1538 pubmed: 19246526 pmcid: 7051638
Eastwood JD, Alexander MJ, Petrella JR, Provenzale JM. Dynamic CT perfusion imaging with acetazolamide challenge for the preprocedural evaluation of a patient with symptomatic middle cerebral artery occlusive disease. AJNR Am J Neuroradiol. 2002;23:285.
pubmed: 11847056 pmcid: 7975256
Matsushima T, Inoue T, Suzuki SO, Fujii K, Fukui M, Hasuo K. Surgical treatment of moyamoya disease in pediatric patients–comparison between the results of indirect and direct revascularization procedures. Neurosurgery. 1992;31:401–5.
doi: 10.1227/00006123-199209000-00003 pubmed: 1407421
Krämer A, Green J, Pollard J, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30:523–30.
doi: 10.1093/bioinformatics/btt703 pubmed: 24336805
Domagalski K, Pawłowska M, Kozielewicz D, Dybowska D, Tretyn A, Halota W. The impact of IL28B genotype and liver fibrosis on the hepatic expression of IP10, IFI27, ISG15, and MX1 and their association with treatment outcomes in patients with chronic hepatitis C. PLoS One. 2015;10(6):e0130899.
Bodnar RJ, Yates CC, Wells A. IP-10 blocks vascular endothelial growth factor-induced endothelial cell motility and tube formation via inhibition of calpain. Circ Res. 2006;98:617–25.
doi: 10.1161/01.RES.0000209968.66606.10 pubmed: 16484616
Yates-Binder CC, Rodgers M, Jaynes J, Wells A, Bodnar RJ, Turner T. An IP-10 (CXCL10)-derived peptide inhibits angiogenesis. PLoS One. 2012;7(7):e40812.
Bodnar RJ, Yates CC, Rodgers ME, Du X, Wells A. IP-10 induces dissociation of newly formed blood vessels. J Cell Sci. 2009;122:2064–77.
doi: 10.1242/jcs.048793 pubmed: 19470579 pmcid: 2723158
Righy C, Turon R, De Freitas G, Japiassú AM, De Castro Faria Neto HC, Bozza M, et al. Hemoglobin metabolism by-products are associated with an inflammatory response in patients with hemorrhagic stroke. Rev Bras Ter Intensiva. 2018;30:21–7.
doi: 10.5935/0103-507X.20180003 pubmed: 29742229 pmcid: 5885227
Kang HS, Kim JH, Phi JH, Kim YY, Kim JE, Wang KC, et al. Plasma matrix metalloproteinases, cytokines and angiogenic factors in moyamoya disease. J Neurol Neurosurg Psychiatry. 2010;81:673–8.
doi: 10.1136/jnnp.2009.191817 pubmed: 19965844
Lange S, Heger J, Euler G, Wartenberg M, Piper HM, Sauer H. Platelet-derived growth factor BB stimulates vasculogenesis of embryonic stem cell-derived endothelial cells by calcium-mediated generation of reactive oxygen species. Cardiovasc Res. 2009;81(1):159–68.
Battegay EJ, Rupp J, Iruela-Arispe L, Sage EH, Pech M. PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J Cell Biol. 1994;125:917 (The Rockefeller University Press).
doi: 10.1083/jcb.125.4.917 pubmed: 7514607
Yamamoto M, Aoyagi M, Fukai N, Matsushima Y, Yamamoto K. Differences in cellular responses to mitogens in arterial smooth muscle cells derived from patients with moyamoya disease. Stroke. 1998;29:1188–93.
doi: 10.1161/01.STR.29.6.1188 pubmed: 9626293
Jamaluddin MS, Weakley SM, Yao Q, Chen C. Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol. 2012;165:622 (Wiley-Blackwell).
doi: 10.1111/j.1476-5381.2011.01369.x pubmed: 21545576 pmcid: 3315035
Chen D, Tang TX, Deng H, Yang XP, Tang ZH. Interleukin-7 biology and its effects on immune cells: mediator of generation, differentiation, survival, and homeostasis. Front Immunol. 2021;12:5156 (Frontiers Media S.A.).
doi: 10.3389/fimmu.2021.747324
Kang HS, Kim JH, Phi JH, Kim YY, Kim JE, Wang KC, et al. Plasma matrix metalloproteinases, cytokines and angiogenic factors in moyamoya disease. J Neurol Neurosurg Psychiatry. 2010;81:673–8.
doi: 10.1136/jnnp.2009.191817 pubmed: 19965844
Minty A, Chalon P, Derocq JM, Dumont X, Guillemot JC, Kaghad M, et al. Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature. 1993;362:248–50.
doi: 10.1038/362248a0 pubmed: 8096327
Yoshida H, Hunter CA. The immunobiology of interleukin-27. Annu Rev Immunol. 2015;33:417–43.
doi: 10.1146/annurev-immunol-032414-112134 pubmed: 25861977

Auteurs

Kumar Abhinav (K)

Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA.
Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
Department of Neurosurgery, Bristol Institute of Clinical Neuroscience, Southmead Hospital, Bristol, UK.

Alex G Lee (AG)

Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA.

Arjun V Pendharkar (AV)

Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA.
Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.

Mark Bigder (M)

Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA.
Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.

Anthony Bet (A)

Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA.

Yael Rosenberg-Hasson (Y)

Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA, USA.

Michelle Y Cheng (MY)

Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA.
Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.

Gary K Steinberg (GK)

Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA. gsteinberg@stanford.edu.
Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA. gsteinberg@stanford.edu.

Classifications MeSH