Compound-Specific Behavioral and Enzymatic Resistance to Toxic Milkweed Cardenolides in a Generalist Bumblebee Pollinator.
Activity
Asclepias
Bombus
Cardenolide
Cardiac glycoside
Consumption
Enzyme
Na+/K+-ATPase
Sodium–potassium pump
Journal
Journal of chemical ecology
ISSN: 1573-1561
Titre abrégé: J Chem Ecol
Pays: United States
ID NLM: 7505563
Informations de publication
Date de publication:
Aug 2023
Aug 2023
Historique:
received:
28
12
2022
accepted:
27
01
2023
revised:
26
01
2023
medline:
30
10
2023
pubmed:
7
2
2023
entrez:
6
2
2023
Statut:
ppublish
Résumé
Plant secondary metabolites that defend leaves from herbivores also occur in floral nectar. While specialist herbivores often have adaptations providing resistance to these compounds in leaves, many social insect pollinators are generalists, and therefore are not expected to be as resistant to such compounds. The milkweeds, Asclepias spp., contain toxic cardenolides in all tissues including floral nectar. We compared the concentrations and identities of cardenolides between tissues of the North American common milkweed Asclepias syriaca, and then studied the effect of the predominant cardenolide in nectar, glycosylated aspecioside, on an abundant pollinator. We show that a generalist bumblebee, Bombus impatiens, a common pollinator in eastern North America, consumes less nectar with experimental addition of ouabain (a standard cardenolide derived from Apocynacid plants native to east Africa) but not with addition of glycosylated aspecioside from milkweeds. At a concentration matching that of the maximum in the natural range, both cardenolides reduced activity levels of bees after four days of consumption, demonstrating toxicity despite variation in behavioral deterrence (i.e., consumption). In vitro enzymatic assays of Na
Identifiants
pubmed: 36745328
doi: 10.1007/s10886-023-01408-3
pii: 10.1007/s10886-023-01408-3
doi:
Substances chimiques
Cardenolides
0
Plant Nectar
0
Ouabain
5ACL011P69
Sodium-Potassium-Exchanging ATPase
EC 7.2.2.13
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
418-427Subventions
Organisme : Directorate for Biological Sciences
ID : 1907375
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420
doi: 10.1034/j.1600-0706.2000.910301.x
Adler LS, Wink M, Distl M, Lentz AJ (2006) Leaf herbivory and nutrients increase nectar alkaloids. Ecol Lett 9:960–967
pubmed: 16913940
doi: 10.1111/j.1461-0248.2006.00944.x
Agrawal AA et al (2022) Functional evidence supports adaptive plant chemical defense along a geographical cline. Proc Natl Acad Sci USA 119:e2205073119
pubmed: 35696564
pmcid: 9231628
doi: 10.1073/pnas.2205073119
Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S (2012) Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytol 194:28–45
pubmed: 22292897
doi: 10.1111/j.1469-8137.2011.04049.x
Baracchi D, Brown MJ, Chittka L (2015) Behavioural evidence for self-medication in bumblebees? F1000Res 4:73
Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. arXiv:14065823
Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633
pubmed: 33874382
doi: 10.1111/j.1469-8137.1994.tb02968.x
Betz RF, Struven RD, Wall JE, Heitler FB (1994) Insect pollinators of 12 milkweed (Asclepias) species. In: Wickett RG, Lewis PD, Woodliffe A, Pratt P (eds) Proceedings of the Thirteenth North American Prairie Conference: Spirit of the Land, our Prairie Legacy. Department of Parks & Recreation, Windsor, pp 45–60
Brower LP, McEvoy PB, Williamson KL, Flannery MA (1972) Variation in cardiac glycoside content of monarch butterflies from natural populations in eastern North America. Science 177:426–429
pubmed: 5043141
doi: 10.1126/science.177.4047.426
Cane JH, Gardner DR, Weber M (2020) Neurotoxic alkaloid in pollen and nectar excludes generalist bees from foraging at death-camas, Toxicoscordion paniculatum (Melanthiaceae). Biol J Linn Soc 131:927–935
doi: 10.1093/biolinnean/blaa159
Detzel A, Wink M (1993) Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4:8–18
doi: 10.1007/BF01245891
Dobler S, Dalla S, Wagschal V, Agrawal AA (2012) Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na, K-ATPase. Proc Natl Acad Sci USA 109:13040–13045
pubmed: 22826239
pmcid: 3420205
doi: 10.1073/pnas.1202111109
Fishbein M, Venable DL (1996) Diversity and temporal change in the effective pollinators of Asclepias tuberosa. Ecology 77:1061–1073
doi: 10.2307/2265576
Fontaine C, Thébault E, Dajoz I (2009) Are insect pollinators more generalist than insect herbivores? Proc R Soc B: Biol Sci 276:3027–3033
doi: 10.1098/rspb.2009.0635
Gervais A, Courtois È, Fournier V, Bélisle M (2020) Landscape composition and local floral resources influence foraging behavior but not the size of Bombus impatiens Cresson (Hymenoptera: Apidae) workers. PLoS ONE 15:e0234498
pubmed: 32584843
pmcid: 7316238
doi: 10.1371/journal.pone.0234498
Gosselin M, Michez D, Vanderplanck M, Roelants D, Glauser G, Rasmont P (2013) Does Aconitum septentrionale chemically protect floral rewards to the advantage of specialist bumblebees? Ecol Entomol 38:400–407
doi: 10.1111/een.12032
Hartmann T, Theuring C, Schmidt J, Rahier M, Pasteels JM (1999) Biochemical strategy of sequestration of pyrrolizidine alkaloids by adults and larvae of chrysomelid leaf beetles. J Insect Physiol 45:1085–1095
pubmed: 12770269
doi: 10.1016/S0022-1910(99)00093-1
Heinrich B (1976) Resource partitioning among some eusocial insects: bumblebees. Ecology 57:874–889
doi: 10.2307/1941054
Hoch JH (1961) A survey of cardiac glycosides and genins. University of South Carolina Press, Columbia, SC USA
Inouye DW (1978) Resource partitioning in bumblebees: experimental studies of foraging behavior. Ecology 59:672–678
doi: 10.2307/1938769
Ivey CT, Martinez P, Wyatt R (2003) Variation in pollinator effectiveness in swamp milkweed, Asclepias incarnata (Apocynaceae). Am J Bot 90:214–225
pubmed: 21659111
doi: 10.3732/ajb.90.2.214
Jacobsen DJ, Raguso RA (2018) Lingering effects of herbivory and plant defenses on pollinators. Curr Biol 28:1164–1169
doi: 10.1016/j.cub.2018.08.010
Janzen DH (1977) Why don’t ants visit flowers. Biotropica 9:252
doi: 10.2307/2388142
Jennersten O, Morse DH (1991) The quality of pollination by diurnal and nocturnal insects visiting common milkweed, Asclepias syriaca. Am Midl Nat 125:18–28
doi: 10.2307/2426365
Jones PL, Agrawal AA (2016) Consequences of toxic secondary compounds in nectar for mutualist bees and antagonist butterflies. Ecology 97:2570–2579
pubmed: 27859127
doi: 10.1002/ecy.1483
Karageorgi M et al (2019) Genome editing retraces the evolution of toxin resistance in the monarch butterfly. Nature 574:409–412
pubmed: 31578524
pmcid: 7039281
doi: 10.1038/s41586-019-1610-8
Kephart SR (1983) The partitioning of pollinators among three species of Asclepias. Ecology 64:120–133
doi: 10.2307/1937335
Kessler A, Halitschke R (2009) Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores: predictions and case study. Funct Ecol 23:901–912
doi: 10.1111/j.1365-2435.2009.01639.x
Kessler D, Baldwin IT (2007) Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J 49:840–854
pubmed: 17316174
doi: 10.1111/j.1365-313X.2006.02995.x
Kessler D, Gase K, Baldwin IT (2008) Field experiments with transformed plants reveal the sense of floral scents. Science 321:1200–1202
pubmed: 18755975
doi: 10.1126/science.1160072
Laverty TM, Plowright R (1988) Flower handling by bumblebees: a comparison of specialists and generalists. Anim Behav 36:733–740
doi: 10.1016/S0003-3472(88)80156-8
Lenth R, Singmann H, Love J, Buerkner P, Herve M (2020) Emmeans: estimated marginal means. R package version 1.4. 4. Am Stat 34(4):216–221
López-Goldar X, Hastings A, Züst T, Agrawal A (2022) Evidence for tissue-specific defence-offence interactions between milkweed and its community of specialized herbivores. Mol Ecol 31:3254–3265
pubmed: 35363921
doi: 10.1111/mec.16450
Malcolm SB (1991) Cardenolide-mediated interactions between plants and herbivores Herbivores: their interactions with secondary plant metabolites. In: Rosenthal GA, Berenbaum MR (eds) Herbivores Their Interactions with Secondary Plant Metabolites, 2nd edn. Academic Press Inc, San Deigo, pp 251–296
doi: 10.1016/B978-0-12-597183-6.50012-7
Manson JS, Otterstatter MC, Thomson JD (2010) Consumption of a nectar alkaloid reduces pathogen load in bumble bees. Oecologia 162:81–89
pubmed: 19711104
doi: 10.1007/s00442-009-1431-9
Manson JS, Rasmann S, Halitschke R, Thomson JD, Agrawal AA (2012) Cardenolides in nectar may be more than a consequence of allocation to other plant parts: a phylogenetic study of Asclepias. Funct Ecol 26:1100–1110
doi: 10.1111/j.1365-2435.2012.02039.x
Morse DH, Fritz RS (1983) Contributions of diurnal and nocturnal insects to the pollination of common milkweed (Asclepias syriaca L.) in a pollen-limited system. Oecologia 60:190–197
pubmed: 28310486
doi: 10.1007/BF00379521
Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O'Hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak C, Weedon J (2013) vegan: Community Ecology Package. R package version 2.6-2. https://cran.r-project.org/web/packages/vegan/index.html
Paula S, Tabet MR, Ball WJ (2005) Interactions between cardiac glycosides and sodium/potassium-ATPase: three-dimensional structure− activity relationship models for ligand binding to the E2-pi form of the enzyme versus activity inhibition. Biochemistry 44:498–510
pubmed: 15641774
doi: 10.1021/bi048680w
Petschenka G, Fandrich S, Sander N, Wagschal V, Boppré M, Dobler S (2013) Stepwise evolution of resistance to toxic cardenolides via genetic substitutions in the Na+/K+-ATPase of milkweed butterflies (Lepidoptera: Danaini). Evolution 67:2753–2761
pubmed: 24033181
doi: 10.1111/evo.12152
Petschenka G, Fei CS, Araya JJ, Schröder S, Timmermann BN, Agrawal AA (2018) Relative selectivity of plant cardenolides for Na+/K+-ATPases from the monarch butterfly and non-resistant insects. Front Plant Sci 9:1424
pubmed: 30323822
pmcid: 6172315
doi: 10.3389/fpls.2018.01424
Petschenka G, Offe JK, Dobler S (2012) Physiological screening for target site insensitivity and localization of Na+/K+-ATPase in cardenolide-adapted Lepidoptera. J Insect Physiol 58:607–612
pubmed: 22343317
doi: 10.1016/j.jinsphys.2011.12.012
Petschenka G, Wagschal V, von Tschirnhaus M, Donath A, Dobler S (2017) Convergently evolved toxic secondary metabolites in plants drive the parallel molecular evolution of insect resistance. Am Nat 190:S29–S43
pubmed: 28731826
doi: 10.1086/691711
Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2007) Linear and nonlinear mixed effects models. R package version 3:1–89. https://cran.r-project.org/web/packages/nlme/index.html
Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11:1–11
doi: 10.1186/1471-2105-11-395
Ranta E, Lundberg H (1980) Resource partitioning in bumblebees: the significance of differences in proboscis length. Oikos 35:298–302
Rasmann S, Agrawal AA (2011) Latitudinal patterns in plant defense: evolution of cardenolides, their toxicity and induction following herbivory. Ecol Lett 14:476–483
pubmed: 21371232
doi: 10.1111/j.1461-0248.2011.01609.x
Rhoades DF, Bergdahl JC (1981) Adaptive significance of toxic nectar. Am Nat 117:798–803
doi: 10.1086/283765
Richardson LL et al (2015) Secondary metabolites in floral nectar reduce parasite infections in bumblebees. Proc R Soc B: Biol Sci 282:20142471
doi: 10.1098/rspb.2014.2471
Richardson LL, Bowers MD, Irwin RE (2016) Nectar chemistry mediates the behavior of parasitized bees: consequences for plant fitness. Ecology 97:325–337
pubmed: 27145608
doi: 10.1890/15-0263.1
Schmitt A, Roy R, Carter CJ (2021) Nectar antimicrobial compounds and their potential effects on pollinators. Curr Opin Insect Sci 44:55–63
pubmed: 33771735
doi: 10.1016/j.cois.2021.03.004
Stevenson PC (2020) For antagonists and mutualists: the paradox of insect toxic secondary metabolites in nectar and pollen. Phytochem Rev 19:603–614
doi: 10.1007/s11101-019-09642-y
Stevenson PC, Nicolson SW, Wright GA (2017) Plant secondary metabolites in nectar: impacts on pollinators and ecological functions. Funct Ecol 31:65–75
doi: 10.1111/1365-2435.12761
Thøstesen AM, Olesen JM (1996) Pollen removal and deposition by specialist and generalist bumblebees in Aconitum septentrionale. Oikos 77:77–84
Tiedeken EJ, Stout JC, Stevenson PC, Wright GA (2014) Bumblebees are not deterred by ecologically relevant concentrations of nectar toxins. J Exp Biol 217:1620–1625
pubmed: 24526720
pmcid: 4006588
Villalona E, Ezray BD, Laveaga E, Agrawal AA, Ali JG, Hines HM (2020) The role of toxic nectar secondary compounds in driving differential bumble bee preferences for milkweed flowers. Oecologia 193:619–630
pubmed: 32671460
doi: 10.1007/s00442-020-04701-0
Wright G et al (2013) Caffeine in floral nectar enhances a pollinator’s memory of reward. Science 339:1202–1204
pubmed: 23471406
pmcid: 4521368
doi: 10.1126/science.1228806