Moisture-driven divergence in mineral-associated soil carbon persistence.
mineral stabilization
radiocarbon
soil carbon
soil carbon persistence
terrestrial carbon cycle
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
14 Feb 2023
14 Feb 2023
Historique:
entrez:
6
2
2023
pubmed:
7
2
2023
medline:
7
2
2023
Statut:
ppublish
Résumé
Mineral stabilization of soil organic matter is an important regulator of the global carbon (C) cycle. However, the vulnerability of mineral-stabilized organic matter (OM) to climate change is currently unknown. We examined soil profiles from 34 sites across the conterminous USA to investigate how the abundance and persistence of mineral-associated organic C varied with climate at the continental scale. Using a novel combination of radiocarbon and molecular composition measurements, we show that the relationship between the abundance and persistence of mineral-associated organic matter (MAOM) appears to be driven by moisture availability. In wetter climates where precipitation exceeds evapotranspiration, excess moisture leads to deeper and more prolonged periods of wetness, creating conditions which favor greater root abundance and also allow for greater diffusion and interaction of inputs with MAOM. In these humid soils, mineral-associated soil organic C concentration and persistence are strongly linked, whereas this relationship is absent in drier climates. In arid soils, root abundance is lower, and interaction of inputs with mineral surfaces is limited by shallower and briefer periods of moisture, resulting in a disconnect between concentration and persistence. Data suggest a tipping point in the cycling of mineral-associated C at a climate threshold where precipitation equals evaporation. As climate patterns shift, our findings emphasize that divergence in the mechanisms of OM persistence associated with historical climate legacies need to be considered in process-based models.
Identifiants
pubmed: 36745807
doi: 10.1073/pnas.2210044120
pmc: PMC9962923
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2210044120Subventions
Organisme : U.S. National Science Foundation Macrosystems, BIO Directorate, Division of Environmental Biology Program
ID : EF-1340681 EF-1340504 EF-1340516 EF-1340250 DBI-1724433
Organisme : National Science Foundation (NSF)
ID : ARCSS-2031238 DEB-1926413
Références
ISME J. 2020 Jan;14(1):1-9
pubmed: 31554911
Oecologia. 1996 Nov;108(3):389-411
pubmed: 28307854
PLoS One. 2016 Jun 08;11(6):e0156720
pubmed: 27275583
Nature. 2016 Dec 22;540(7634):567-569
pubmed: 27871089
Global Biogeochem Cycles. 2018 Oct;32(10):1574-1588
pubmed: 31007379
J Environ Qual. 2007 May 07;36(3):904-12
pubmed: 17485723
PLoS One. 2016 Mar 24;11(3):e0151957
pubmed: 27011012
Sci Total Environ. 2021 Nov 1;793:148569
pubmed: 34328984
Anal Chem. 2000 Jul 15;72(14):3116-21
pubmed: 10939375
Trends Plant Sci. 2022 Aug;27(8):749-757
pubmed: 35606255
Glob Chang Biol. 2022 Feb;28(3):1178-1196
pubmed: 34862692
Nat Commun. 2019 Aug 2;10(1):3481
pubmed: 31375717
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10572-10577
pubmed: 28923923
Proc Natl Acad Sci U S A. 2021 Dec 28;118(52):
pubmed: 34930848
Environ Sci Technol. 2005 Nov 1;39(21):8142-9
pubmed: 16294847
Nat Commun. 2020 Jul 23;11(1):3684
pubmed: 32703952
New Phytol. 2020 Mar;225(5):1899-1905
pubmed: 31571220
Nat Microbiol. 2017 Jul 25;2:17105
pubmed: 28741607
Nat Commun. 2019 Aug 8;10(1):3568
pubmed: 31395870
Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2210044120
pubmed: 36745807
Environ Sci Technol. 2021 Dec 7;55(23):16224-16235
pubmed: 34813696
Glob Chang Biol. 2013 Apr;19(4):988-95
pubmed: 23504877
Sci Data. 2018 Jan 09;5:170191
pubmed: 29313841