Effects of laboratory domestication on the rodent gut microbiome.
Journal
ISME communications
ISSN: 2730-6151
Titre abrégé: ISME Commun
Pays: England
ID NLM: 9918205372406676
Informations de publication
Date de publication:
17 Sep 2021
17 Sep 2021
Historique:
received:
21
07
2021
accepted:
03
09
2021
revised:
22
08
2021
entrez:
6
2
2023
pubmed:
17
9
2021
medline:
17
9
2021
Statut:
epublish
Résumé
The domestication of the laboratory mouse has influenced the composition of its native gut microbiome, which is now known to differ from that of its wild ancestor. However, limited exploration of the rodent gut microbiome beyond the model species Mus musculus has made it difficult to interpret microbiome variation in a broader phylogenetic context. Here, we analyse 120 de novo and 469 public metagenomically-sequenced faecal and caecal samples from 16 rodent hosts representing wild, laboratory and captive lifestyles. Distinct gut bacterial communities were observed between rodent host genera, with broadly distributed species originating from the as-yet-uncultured bacterial genera UBA9475 and UBA2821 in the families Oscillospiraceae and Lachnospiraceae, respectively. In laboratory mice, Helicobacteraceae were generally depleted relative to wild mice and specific Muribaculaceae populations were enriched in different laboratory facilities, suggesting facility-specific outgrowths of this historically dominant rodent gut family. Several bacterial families of clinical interest, including Akkermansiaceae, Streptococcaceae and Enterobacteriaceae, were inferred to have gained over half of their representative species in mice within the laboratory environment, being undetected in most wild rodents and suggesting an association between laboratory domestication and pathobiont emergence.
Identifiants
pubmed: 36747007
doi: 10.1038/s43705-021-00053-9
pii: 10.1038/s43705-021-00053-9
pmc: PMC9723573
doi:
Types de publication
Journal Article
Langues
eng
Pagination
49Informations de copyright
© 2021. The Author(s).
Références
Chen C, Zhou Y, Fu H, Xiong X, Fang S, Jiang H, et al. Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome. Nat Commun. 2021;12:1106.
pubmed: 33597514
pmcid: 7889623
doi: 10.1038/s41467-021-21295-0
Metcalf JL, Song SJ, Morton JT, Weiss S, Seguin-Orlando A, Joly F, et al. Evaluating the impact of domestication and captivity on the horse gut microbiome. Sci Reports. 2017;7:15497.
Alessandri G, Milani C, Mancabelli L, Mangifesta M, Lugli GA, Viappiani A, et al. The impact of human-facilitated selection on the gut microbiota of domesticated mammals. FEMS Microbiol Ecol. 2019;95. https://doi.org/10.1093/femsec/fiz121
Reese AT, Chadaideh KS, Diggins CE, Schell LD, Beckel M, Callahan P, et al. Effects of domestication on the gut microbiota parallel those of human industrialization. eLife. 2021;10:e60197.
pubmed: 33755015
pmcid: 7987347
doi: 10.7554/eLife.60197
Staats J The Laboratory Mouse. In: Green EL, editor. Biology of the laboratory mouse. New York: Dover Publications; 1966. p. 1-9.
Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell. 2017;171:1015–28.e13.
pubmed: 29056339
pmcid: 6887100
doi: 10.1016/j.cell.2017.09.016
Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, Badger JH, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365:eaaw4361.
pubmed: 31371577
pmcid: 7377314
doi: 10.1126/science.aaw4361
Abolins S, King EC, Lazarou L, Weldon L, Hughes L, Drescher P, et al. The comparative immunology of wild and laboratory mice, Mus musculus domesticus. Nat Commun. 2017;8:14811.
pubmed: 28466840
pmcid: 5418598
doi: 10.1038/ncomms14811
Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature. 2016;532:512–6.
pubmed: 27096360
pmcid: 4871315
doi: 10.1038/nature17655
Yeung F, Chen YH, Lin JD, Leung JM, McCauley C, Devlin JC, et al. Altered immunity of laboratory mice in the natural environment is associated with fungal colonization. Cell Host Microbe. 2020;27:809–22.e6.
pubmed: 32209432
pmcid: 7276265
doi: 10.1016/j.chom.2020.02.015
Masopust D, Sivula CP, Jameson SC. Of mice, dirty mice, and men: using mice to understand human immunology. J Immunol. 2017;199:383–8.
pubmed: 28696328
doi: 10.4049/jimmunol.1700453
Kreisinger J, Čížková D, Vohánka J, Piálek J. Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high-throughput parallel pyrosequencing. Mol Ecol. 2014;23:5048–60.
pubmed: 25204516
doi: 10.1111/mec.12909
Lesker TR, Durairaj AC, Gálvez E, Lagkouvardos I, Baines JF, Clavel T, et al. An integrated metagenome catalog reveals new insights into the murine gut microbiome. Cell Reports. 2020;30:2909–22.e6.
pubmed: 32130896
doi: 10.1016/j.celrep.2020.02.036
Linnenbrink M, Wang J, Hardouin EA, Künzel S, Metzler D, Baines JF. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol Ecol. 2013;22:1904–16.
pubmed: 23398547
doi: 10.1111/mec.12206
Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M. The gut microbiota of wild mice. PLoS ONE. 2015;10:e0134643.
pubmed: 26258484
pmcid: 4530874
doi: 10.1371/journal.pone.0134643
Wang J, Linnenbrink M, Künzel S, Fernandes R, Nadeau MJ, Rosenstiel P, et al. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc Natl Acad Sci USA. 2014;111:E2703–E10.
pubmed: 24912178
pmcid: 4084472
Salzman NH, de Jong H, Paterson Y, Harmsen H, Welling GW, Bos NA. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology. 2002;148:3651–60.
pubmed: 12427955
doi: 10.1099/00221287-148-11-3651
Knowles SCL, Eccles RM, Baltrūnaitė L. Species identity dominates over environment in shaping the microbiota of small mammals. Ecology Lett. 2019;22:826–37.
doi: 10.1111/ele.13240
Goertz S, de Menezes AB, Birtles RJ, Fenn J, Lowe AE, MacColl A, et al. Geographical location influences the composition of the gut microbiota in wild house mice (Mus musculus domesticus) at a fine spatial scale. PLoS ONE. 2019;14:e0222501–e.
pubmed: 31557179
pmcid: 6767902
doi: 10.1371/journal.pone.0222501
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
pubmed: 28298430
pmcid: 5411777
doi: 10.1101/gr.213959.116
Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
pubmed: 25609793
doi: 10.1093/bioinformatics/btv033
Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.
pubmed: 26336640
pmcid: 4556158
doi: 10.7717/peerj.1165
Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome. 2014;2:26.
pubmed: 25136443
pmcid: 4129434
doi: 10.1186/2049-2618-2-26
Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.
pubmed: 25218180
doi: 10.1038/nmeth.3103
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
pubmed: 25977477
pmcid: 4484387
doi: 10.1101/gr.186072.114
Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics. 2019;36:1925–7.
pmcid: 7703759
Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.
pubmed: 32341564
doi: 10.1038/s41587-020-0501-8
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
pubmed: 30148503
doi: 10.1038/nbt.4229
Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, et al. The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol. 2016;1:16131.
pubmed: 27670113
doi: 10.1038/nmicrobiol.2016.131
Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL, Solden LM, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 2020;48:8883–900.
pubmed: 32766782
pmcid: 7498326
doi: 10.1093/nar/gkaa621
Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.
pubmed: 28742071
pmcid: 5702732
doi: 10.1038/ismej.2017.126
Liu C, Zhou N, Du MX, Sun YT, Wang K, Wang YJ, et al. The mouse gut microbial biobank expands the coverage of cultured bacteria. Nat Commun. 2020;11:79.
pubmed: 31911589
pmcid: 6946648
doi: 10.1038/s41467-019-13836-5
Costea PI, Coelho LP, Sunagawa S, Munch R, Huerta-Cepas J, Forslund K, et al. Subspecies in the global human gut microbiome. Mol Syst Biol. 2017;13:960.
pubmed: 29242367
pmcid: 5740502
doi: 10.15252/msb.20177589
Rampelli S, Schnorr SL, Consolandi C, Turroni S, Severgnini M, Peano C, et al. Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Curr Biol. 2015;25:1682–93.
pubmed: 25981789
doi: 10.1016/j.cub.2015.04.055
Xiao L, Estellé J, Kiilerich P, Ramayo-Caldas Y, Xia Z, Feng Q, et al. A reference gene catalogue of the pig gut microbiome. Nat Microbiol. 2016;1:16161.
pubmed: 27643971
doi: 10.1038/nmicrobiol.2016.161
Connelly S, Fanelli B, Hasan NA, Colwell RR, Kaleko M. Oral metallo-beta-lactamase protects the gut microbiome from carbapenem-mediated damage and reduces propagation of antibiotic resistance in pigs. Front Microbiol. 2019;10:101.
pubmed: 30804903
pmcid: 6370672
doi: 10.3389/fmicb.2019.00101
Martin M Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal. 2011;17:10–12.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
pubmed: 20383131
pmcid: 3156573
doi: 10.1038/nmeth.f.303
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
pubmed: 27214047
pmcid: 4927377
doi: 10.1038/nmeth.3869
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
pubmed: 2231712
doi: 10.1016/S0022-2836(05)80360-2
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D6.
pubmed: 23193283
doi: 10.1093/nar/gks1219
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
pubmed: 23630581
pmcid: 3632530
doi: 10.1371/journal.pone.0061217
Dinno A dunn.test: Dunn’s test of multiple comparisons using rank sums. R package version 135 [Internet]. 2017. Available from: https://cran.r-project.org/web/packages/dunn.test .
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2014;32:268–74.
pubmed: 25371430
pmcid: 4271533
doi: 10.1093/molbev/msu300
Letunic I, Bork P Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.
pubmed: 20395285
doi: 10.1093/bioinformatics/btq166
Fabre P-H, Hautier L, Dimitrov D, P Douzery EJ. A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evol Biol. 2012;12:88.
pubmed: 22697210
pmcid: 3532383
doi: 10.1186/1471-2148-12-88
Steppan SJ, Schenk JJ. Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates. PLoS ONE. 2017;12:e0183070.
pubmed: 28813483
pmcid: 5559066
doi: 10.1371/journal.pone.0183070
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
pubmed: 23329690
pmcid: 3603318
doi: 10.1093/molbev/mst010
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
pubmed: 19505945
pmcid: 2712344
doi: 10.1093/bioinformatics/btp348
Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS ONE. 2013;8:e67019.
pubmed: 23843979
pmcid: 3699591
doi: 10.1371/journal.pone.0067019
Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13:e1005752.
pubmed: 29099853
pmcid: 5687754
doi: 10.1371/journal.pcbi.1005752
Csűös M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 2010;26:1910–2.
doi: 10.1093/bioinformatics/btq315
Oksanen J, et al. vegan: Community Ecology Package. R package version 23-1 [Internet]. 2015. Available from: http://CRAN.R-project.org/package=vegan .
Wickham H, et al. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics 2019. Available from: https://CRAN.R-project.org/package=ggplot2 .
Pan H, Guo R, Zhu J, Wang Q, Ju Y, Xie Y, et al. A gene catalogue of the Sprague-Dawley rat gut metagenome. Gigascience. 2018;7.
Zhang S, Lin L, Liu W, Zou B, Cai Y, Liu D, et al. Shen-Ling-Bai-Zhu-San alleviates functional dyspepsia in rats and modulates the composition of the gut microbiota. Nutr Res. 2019;71:89–99.
pubmed: 31757632
doi: 10.1016/j.nutres.2019.10.001
Zhao L, Huang Y, Lu L, Yang W, Huang T, Lin Z, et al. Saturated long-chain fatty acid-producing bacteria contribute to enhanced colonic motility in rats. Microbiome. 2018;6:107.
pubmed: 29903041
pmcid: 6003035
doi: 10.1186/s40168-018-0492-6
Donovan M, Lynch M, Mackey CS, Platt GN, Washburn BK, Vera DL, et al. Metagenome-assembled genome sequences of five strains from the Microtus ochrogaster (prairie vole) fecal microbiome. Microbiol Res Announcements. 2020;9:e01310–19.
Kohl KD, Oakeson KF, Orr TJ, Miller AW, Forbey JS, Phillips CD, et al. Metagenomic sequencing provides insights into microbial detoxification in the guts of small mammalian herbivores (Neotoma spp.). FEMS Microbiol Ecol. 2018;94. https://doi.org/10.1093/femsec/fiy184 .
Kohl KD, Weiss RB, Cox J, Dale C, Denise Dearing M. Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecology Lett. 2014;17:1238–46.
doi: 10.1111/ele.12329
Finlayson-Trick ECL, Getz LJ, Slaine PD, Thornbury M, Lamoureux E, Cook J, et al. Taxonomic differences of gut microbiomes drive cellulolytic enzymatic potential within hind-gut fermenting mammals. PLoS ONE. 2017;12:e0189404.
pubmed: 29281673
pmcid: 5744928
doi: 10.1371/journal.pone.0189404
Hildebrand F, Ebersbach T, Nielsen HB, Li X, Sonne SB, Bertalan M, et al. A comparative analysis of the intestinal metagenomes present in guinea pigs (Cavia porcellus) and humans (Homo sapiens). BMC Genomics. 2012;13:514.
pubmed: 23020652
pmcid: 3472315
doi: 10.1186/1471-2164-13-514
Xiao L, Feng Q, Liang S, Sonne SB, Xia Z, Qiu X, et al. A catalog of the mouse gut metagenome. Nat Biotechnol. 2015;33:1103–8.
pubmed: 26414350
doi: 10.1038/nbt.3353
Ericsson AC, Franklin CL The gut microbiome of laboratory mice: considerations and best practices for translational research. Mamm Genome. 2021;32:239–50.
Beresford-Jones BS, Forster SC, Stares MD, Notley G, Viciani E, Browne HP, et al. Functional and taxonomic comparison of mouse and human gut microbiotas using extensive culturing and metagenomics. bioRxiv. 2021:2021.02.11.430759. https://doi.org/10.1101/2021.02.11.430759 .
Skoglund A, Bäckhed HK, Nilsson C, Björkholm B, Normark S, Engstrand L. A changing gastric environment leads to adaptation of lipopolysaccharide variants in Helicobacter pylori populations during colonization. PLoS ONE. 2009;4:e5885.
pubmed: 19517017
pmcid: 2690825
doi: 10.1371/journal.pone.0005885
Tran HQ, Ley RE, Gewirtz AT, Chassaing B. Flagellin-elicited adaptive immunity suppresses flagellated microbiota and vaccinates against chronic inflammatory diseases. Nat Commun. 2019;10:5650.
pubmed: 31827095
pmcid: 6906489
doi: 10.1038/s41467-019-13538-y
Schmidt E, Mykytczuk N, Schulte-Hostedde AI Effects of the captive and wild environment on diversity of the gut microbiome of deer mice (Peromyscus maniculatus). The ISME J. 2019;13:1293–1305.
Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533:543–6.
pubmed: 27144353
pmcid: 4890681
doi: 10.1038/nature17645
Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol. 2013;31:533–8.
pubmed: 23707974
doi: 10.1038/nbt.2579
Tanca A, Manghina V, Fraumene C, Palomba A, Abbondio M, Deligios M, et al. Metaproteogenomics reveals taxonomic and functional changes between cecal and fecal microbiota in mouse. Front Microbiol. 2017;8:8.
doi: 10.3389/fmicb.2017.00391
Chung YW, Gwak H-J, Moon S, Rho M, Ryu J-H. Functional dynamics of bacterial species in the mouse gut microbiome revealed by metagenomic and metatranscriptomic analyses. PLoS ONE. 2020;15:e0227886.
pubmed: 31978162
pmcid: 6980644
doi: 10.1371/journal.pone.0227886
Moshkelgosha S, Verhasselt HL, Masetti G, Covelli D, Biscarini F, Horstmann M, et al. Modulating gut microbiota in a mouse model of Graves’ orbitopathy and its impact on induced disease. Microbiome. 2021;9:45.
pubmed: 33593429
pmcid: 7888139
doi: 10.1186/s40168-020-00952-4
Uribe-Herranz M, Rafail S, Beghi S, Gil-de-Gómez L, Verginadis I, Bittinger K, et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J Clin Investig. 2020;130:466–79.
pubmed: 31815742
doi: 10.1172/JCI124332
Alessandri G, Milani C, Mancabelli L, Mangifesta M, Lugli GA, Viappiani A, et al. Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features. Environ Microbiol. 2019;21:1331–43.
pubmed: 30680877
doi: 10.1111/1462-2920.14540
Bowerman KL, Varelias A, Lachner N, Kuns RD, Hill GR, Hugenholtz P. Continuous pre- and post-transplant exposure to a disease-associated gut microbiome promotes hyper-acute graft-versus-host disease in wild-type mice. Gut Microbes. 2020;11:1–17.
doi: 10.1080/19490976.2019.1705729
Smith BJ, Miller RA, Ericsson AC, Harrison DC, Strong R, Schmidt TM. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol. 2019;19:130.
pubmed: 31195972
pmcid: 6567620
doi: 10.1186/s12866-019-1494-7
Volk JK, Nyström E, van der Post S, Abad BM, Schroeder BO, Johansson Å, et al. The Nlrp6 inflammasome is not required for baseline colonic inner mucus layer formation or function. J Exp Med. 2019;216:2602–18.
pubmed: 31420376
pmcid: 6829596
doi: 10.1084/jem.20190679
Martínez-Mota R, Kohl KD, Orr TJ, Denise Dearing M. Natural diets promote retention of the native gut microbiota in captive rodents. The ISME J. 2020;14:67–78.
pubmed: 31495829
doi: 10.1038/s41396-019-0497-6
Horner-Devine MC, Bohannan BJM. Phylogenetic clustering and overdispersion in bacterial communities. Ecology. 2006;87:S100–S8.
pubmed: 16922306
doi: 10.1890/0012-9658(2006)87[100:PCAOIB]2.0.CO;2
Ormerod KL, Wood DL, Lachner N, Gellatly SL, Daly JN, Parsons JD, et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome. 2016;4:1–17.
doi: 10.1186/s40168-016-0181-2
Forster SC, Clare S, Beresford-Jones B, Harcourt K, Notley G, Stares M et al. Novel gut pathobionts confound results in a widely used mouse model of human inflammatory disease. bioRxiv. 2021:2021.02.09.430393. https://doi.org/10.1101/2021.02.09.430393 .
Liu Y, Yang K, Jia Y, Shi J, Tong Z, Fang D, et al. Gut microbiome alterations in high-fat-diet-fed mice are associated with antibiotic tolerance. Nat Microbiol. 2021;6:874–84.
pubmed: 34017107
doi: 10.1038/s41564-021-00912-0
Bisanz JE, Upadhyay V, Turnbaugh JA, Ly K, Turnbaugh PJ. Meta-analysis reveals reproducible gut microbiome alterations in response to a high-fat diet. Cell Host Microbe. 2019;26:265–72.e4.
pubmed: 31324413
pmcid: 6708278
doi: 10.1016/j.chom.2019.06.013