The mitochondrial BCKD complex interacts with hepatic apolipoprotein E in cultured cells in vitro and mouse livers in vivo.


Journal

Cellular and molecular life sciences : CMLS
ISSN: 1420-9071
Titre abrégé: Cell Mol Life Sci
Pays: Switzerland
ID NLM: 9705402

Informations de publication

Date de publication:
07 Feb 2023
Historique:
received: 14 10 2022
accepted: 23 01 2023
revised: 22 12 2022
entrez: 7 2 2023
pubmed: 8 2 2023
medline: 10 2 2023
Statut: epublish

Résumé

Apolipoprotein E (APOE) is known for its role in lipid metabolism and its association with age-related disease pathology. The aim of the present work was to identify previously unknown functions of APOE based on the detection of novel APOE protein-protein interaction candidates. APOE targeted replacement mice and transfected cultured hepatocytes expressing the human isoforms APOE3 and APOE4 were used. For 7 months, APOE3 and APOE4 mice were fed a high-fat and high-sugar diet to induce obesity, while a subgroup was subjected to 30% dietary restriction. Proteomic analysis of coimmunoprecipitation products from APOE mouse liver extracts revealed 28 APOE-interacting candidate proteins, including branched-chain alpha-keto acid dehydrogenase (BCKD) complex subunit alpha (BCKDHA) and voltage-dependent anion-selective channel 1 (VDAC1). The binding of APOE and BCKDHA was verified in situ by proximity ligation assay in cultured cells. The activity of the BCKD enzyme complex was significantly higher in obese APOE4 mice than in APOE3 mice, while the plasma levels of branched-chain amino acids and mTOR signalling proteins were not different. However, the protein-protein interaction with VDAC1 was strongly induced in APOE3 and APOE4 mice upon dietary restriction, suggesting a prominent role of APOE in mitochondrial function. The protein-protein interactions of APOE with BCKDHA and VDAC1 appear to be of physiological relevance and are modulated upon dietary restriction. Because these are mitochondrial proteins, it may be suggested that APOE is involved in mitochondria-related processes and adaptation to hepatic energy demands.

Sections du résumé

BACKGROUND AND AIMS OBJECTIVE
Apolipoprotein E (APOE) is known for its role in lipid metabolism and its association with age-related disease pathology. The aim of the present work was to identify previously unknown functions of APOE based on the detection of novel APOE protein-protein interaction candidates.
APPROACH AND RESULTS RESULTS
APOE targeted replacement mice and transfected cultured hepatocytes expressing the human isoforms APOE3 and APOE4 were used. For 7 months, APOE3 and APOE4 mice were fed a high-fat and high-sugar diet to induce obesity, while a subgroup was subjected to 30% dietary restriction. Proteomic analysis of coimmunoprecipitation products from APOE mouse liver extracts revealed 28 APOE-interacting candidate proteins, including branched-chain alpha-keto acid dehydrogenase (BCKD) complex subunit alpha (BCKDHA) and voltage-dependent anion-selective channel 1 (VDAC1). The binding of APOE and BCKDHA was verified in situ by proximity ligation assay in cultured cells. The activity of the BCKD enzyme complex was significantly higher in obese APOE4 mice than in APOE3 mice, while the plasma levels of branched-chain amino acids and mTOR signalling proteins were not different. However, the protein-protein interaction with VDAC1 was strongly induced in APOE3 and APOE4 mice upon dietary restriction, suggesting a prominent role of APOE in mitochondrial function.
CONCLUSIONS CONCLUSIONS
The protein-protein interactions of APOE with BCKDHA and VDAC1 appear to be of physiological relevance and are modulated upon dietary restriction. Because these are mitochondrial proteins, it may be suggested that APOE is involved in mitochondria-related processes and adaptation to hepatic energy demands.

Identifiants

pubmed: 36749362
doi: 10.1007/s00018-023-04706-x
pii: 10.1007/s00018-023-04706-x
pmc: PMC9905200
doi:

Substances chimiques

Apolipoprotein E4 0
Apolipoprotein E3 0
Apolipoproteins E 0
Carrier Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

59

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : HU 1702/6-1
Organisme : Deutsche Forschungsgemeinschaft
ID : TH 872/13-1

Informations de copyright

© 2023. The Author(s).

Références

Wolters FJ, Yang Q, Biggs ML, Jakobsdottir J, Li S, Evans DS et al (2019) The impact of APOE genotype on survival: Results of 38,537 participants from six population-based cohorts (E2-CHARGE). PLoS ONE 14(7):e0219668. https://doi.org/10.1371/journal.pone.0219668
doi: 10.1371/journal.pone.0219668 pubmed: 31356640 pmcid: 6663005
Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923. https://doi.org/10.1126/science.8346443
doi: 10.1126/science.8346443 pubmed: 8346443
Huebbe P, Rimbach G (2017) Evolution of human apolipoprotein E (APOE) isoforms: gene structure, protein function and interaction with dietary factors. Ageing Res Rev 37:146–161. https://doi.org/10.1016/j.arr.2017.06.002
doi: 10.1016/j.arr.2017.06.002 pubmed: 28647612
Huebbe P, Nebel A, Siegert S, Moehring J, Boesch-Saadatmandi C, Most E et al (2011) APOE ε4 is associated with higher vitamin D levels in targeted replacement mice and humans. FASEB J 25(9):3262–3270. https://doi.org/10.1096/fj.11-180935
doi: 10.1096/fj.11-180935 pubmed: 21659554
Kuhlmann I, Minihane AM, Huebbe P, Nebel A, Rimbach G (2010) Apolipoprotein E genotype and hepatitis C, HIV and herpes simplex disease risk: a literature review. Lipids Health Dis 9:8. https://doi.org/10.1186/1476-511X-9-8
doi: 10.1186/1476-511X-9-8 pubmed: 20109174 pmcid: 2830997
Oriá RB, Patrick PD, Oriá MOB, Lorntz B, Thompson MR, Azevedo OGR et al (2010) ApoE polymorphisms and diarrheal outcomes in Brazilian shanty town children. Braz J Med Biol Res 43(3):249–256. https://doi.org/10.1590/s0100-879x2010007500003
doi: 10.1590/s0100-879x2010007500003 pubmed: 20401432
Dose J, Schloesser A, Torres GG, Venkatesh G, Häsler R, Flachsbart F et al (2018) On a Western diet, APOE ɛ4 is associated with low innate immune sensing, but not APOE ɛ3. J Allergy Clin Immunol 142(4):1346-1349.e9. https://doi.org/10.1016/j.jaci.2018.05.033
doi: 10.1016/j.jaci.2018.05.033 pubmed: 29928926
Lee J-Y, Acosta EG, Stoeck IK, Long G, Hiet M-S, Mueller B et al (2014) Apolipoprotein E likely contributes to a maturation step of infectious hepatitis C virus particles and interacts with viral envelope glycoproteins. J Virol 88(21):12422–12437. https://doi.org/10.1128/JVI.01660-14
doi: 10.1128/JVI.01660-14 pubmed: 25122793 pmcid: 4248909
Theendakara V, Peters-Libeu CA, Spilman P, Poksay KS, Bredesen DE, Rao RV (2016) Direct transcriptional effects of apolipoprotein E. J Neurosci 36(3):685–700. https://doi.org/10.1523/JNEUROSCI.3562-15.2016
doi: 10.1523/JNEUROSCI.3562-15.2016 pubmed: 26791201 pmcid: 4719010
Urfer-Buchwalder A, Urfer R (2017) Identification of a nuclear respiratory factor 1 recognition motif in the apolipoprotein E variant APOE4 linked to Alzheimer’s disease. Sci Rep 7:40668. https://doi.org/10.1038/srep40668
doi: 10.1038/srep40668 pubmed: 28094792 pmcid: 5240558
Chin D, Hagl S, Hoehn A, Huebbe P, Pallauf K, Grune T et al (2014) Adenosine triphosphate concentrations are higher in the brain of APOE3- compared to APOE4-targeted replacement mice and can be modulated by curcumin. Genes Nutr 9(3):397. https://doi.org/10.1007/s12263-014-0397-3
doi: 10.1007/s12263-014-0397-3 pubmed: 24671632 pmcid: 4026431
Schmukler E, Solomon S, Simonovitch S, Goldshmit Y, Wolfson E, Michaelson DM et al (2020) Altered mitochondrial dynamics and function in APOE4-expressing astrocytes. Cell Death Dis 11(7):578. https://doi.org/10.1038/s41419-020-02776-4
doi: 10.1038/s41419-020-02776-4 pubmed: 32709881 pmcid: 7382473
Yin J, Nielsen M, Carcione T, Li S, Shi J (2019) Apolipoprotein E regulates mitochondrial function through the PGC-1α-sirtuin 3 pathway. Aging (Albany NY) 11(23):11148–11156. https://doi.org/10.18632/aging.102516
doi: 10.18632/aging.102516 pubmed: 31808750
Orr AL, Kim C, Jimenez-Morales D, Newton BW, Johnson JR, Krogan NJ et al (2019) Neuronal apolipoprotein E4 expression results in proteome-wide alterations and compromises bioenergetic capacity by disrupting mitochondrial function. J Alzheimers Dis 68(3):991–1011. https://doi.org/10.3233/JAD-181184
doi: 10.3233/JAD-181184 pubmed: 30883359 pmcid: 6481541
Qi G, Mi Y, Shi X, Gu H, Brinton RD, Yin F (2021) ApoE4 impairs neuron-astrocyte coupling of fatty acid metabolism. Cell Rep 34(1):108572. https://doi.org/10.1016/j.celrep.2020.108572
doi: 10.1016/j.celrep.2020.108572 pubmed: 33406436 pmcid: 7837265
Yin J, Reiman EM, Beach TG, Serrano GE, Sabbagh MN, Nielsen M et al (2020) Effect of ApoE isoforms on mitochondria in Alzheimer disease. Neurology 94(23):e2404–e2411. https://doi.org/10.1212/WNL.0000000000009582
doi: 10.1212/WNL.0000000000009582 pubmed: 32457210 pmcid: 7455369
Dose J, Nebel A, Piegholdt S, Rimbach G, Huebbe P (2016) Influence of the APOE genotype on hepatic stress response: studies in APOE targeted replacement mice and human liver cells. Free Radic Biol Med 96:264–272. https://doi.org/10.1016/j.freeradbiomed.2016.04.031
doi: 10.1016/j.freeradbiomed.2016.04.031 pubmed: 27130033
Sullivan PM, Mezdour H, Aratani Y, Knouff C, Najib J, Reddick RL et al (1997) Targeted replacement of the mouse apolipoprotein e gene with the common human APOE3 allele enhances diet-induced hypercholesterolemia and atherosclerosis. J Biol Chem 272(29):17972–17980. https://doi.org/10.1074/jbc.272.29.17972
doi: 10.1074/jbc.272.29.17972 pubmed: 9218423
Huebbe P, Dose J, Schloesser A, Campbell G, Glüer C-C, Gupta Y et al (2015) Apolipoprotein E (APOE) genotype regulates body weight and fatty acid utilization-Studies in gene-targeted replacement mice. Mol Nutr Food Res 59(2):334–343. https://doi.org/10.1002/mnfr.201400636
doi: 10.1002/mnfr.201400636 pubmed: 25381750
Schloesser A, Campbell G, Glüer C-C, Rimbach G, Huebbe P (2015) Restriction on an energy-dense diet improves markers of metabolic health and cellular aging in mice through decreasing hepatic mTOR activity. Rejuvenation Res 18(1):30–39. https://doi.org/10.1089/rej.2014.1630
doi: 10.1089/rej.2014.1630 pubmed: 25405871 pmcid: 4340804
Nakai N, Kobayashi R, Popov KM, Harris RA, Shimomura Y (2000) Determination of branched-chain alpha-keto acid dehydrogenase activity state and branched-chain alpha-keto acid dehydrogenase kinase activity and protein in mammalian tissues. Methods Enzymol 324:48–62. https://doi.org/10.1016/s0076-6879(00)24218-3
doi: 10.1016/s0076-6879(00)24218-3 pubmed: 10989417
Gürke J, Hirche F, Thieme R, Haucke E, Schindler M, Stangl GI et al (2015) Maternal diabetes leads to adaptation in embryonic amino acid metabolism during early pregnancy. PLoS ONE 10(5):e0127465. https://doi.org/10.1371/journal.pone.0127465
doi: 10.1371/journal.pone.0127465 pubmed: 26020623 pmcid: 4447349
Zhang M, Zhang Y, Ren S, Zhang Z, Wang Y, Song R (2018) Optimization of a precolumn OPA derivatization HPLC assay for monitoring of l-asparagine depletion in serum during l-asparaginase therapy. J Chromatogr Sci 56(9):794–801. https://doi.org/10.1093/chromsci/bmy053
doi: 10.1093/chromsci/bmy053 pubmed: 29878070
Schuster R (1988) Determination of amino acids in biological, pharmaceutical, plant and food samples by automated precolumn derivatization and high-performance liquid chromatography. J Chromatogr 431(2):271–284. https://doi.org/10.1016/s0378-4347(00)83096-0
doi: 10.1016/s0378-4347(00)83096-0 pubmed: 3243784
Suryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, Hutson SM (1998) A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr 68(1):72–81. https://doi.org/10.1093/ajcn/68.1.72
doi: 10.1093/ajcn/68.1.72 pubmed: 9665099
Moutaoufik MT, Malty R, Amin S, Zhang Q, Phanse S, Gagarinova A et al (2019) Rewiring of the human mitochondrial interactome during neuronal reprogramming reveals regulators of the respirasome and neurogenesis. iScience 19:1114–1132. https://doi.org/10.1016/j.isci.2019.08.057
doi: 10.1016/j.isci.2019.08.057 pubmed: 31536960 pmcid: 6831851
Zhou M, Lucas DA, Chan KC, Issaq HJ, Petricoin EF, Liotta LA et al (2004) An investigation into the human serum “interactome.” Electrophoresis 25(9):1289–1298. https://doi.org/10.1002/elps.200405866
doi: 10.1002/elps.200405866 pubmed: 15174051
Huttlin EL, Ting L, Bruckner RJ, Gebreab F, Gygi MP, Szpyt J et al (2015) The BioPlex network: a systematic exploration of the human interactome. Cell 162(2):425–440. https://doi.org/10.1016/j.cell.2015.06.043
doi: 10.1016/j.cell.2015.06.043 pubmed: 26186194 pmcid: 4617211
Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K et al (2017) Architecture of the human interactome defines protein communities and disease networks. Nature 545(7655):505–509. https://doi.org/10.1038/nature22366
doi: 10.1038/nature22366 pubmed: 28514442 pmcid: 5531611
Huttlin EL, Bruckner RJ, Navarrete-Perea J, Cannon JR, Baltier K, Gebreab F et al (2021) Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 184(11):3022-3040.e28. https://doi.org/10.1016/j.cell.2021.04.011
doi: 10.1016/j.cell.2021.04.011 pubmed: 33961781 pmcid: 8165030
Chen W-Y, Chen Y-F, Chan H-C, Chung C-H, Peng H-Y, Ho Y-C et al (2020) Role of apolipoprotein E in electronegative low-density lipoprotein-induced mitochondrial dysfunction in cardiomyocytes. Metabolism 107:154227. https://doi.org/10.1016/j.metabol.2020.154227
doi: 10.1016/j.metabol.2020.154227 pubmed: 32275974
Arbones-Mainar JM, Johnson LA, Torres-Perez E, Garcia AE, Perez-Diaz S, Raber J et al (2016) Metabolic shifts toward fatty-acid usage and increased thermogenesis are associated with impaired adipogenesis in mice expressing human APOE4. Int J Obes 40(10):1574–1581. https://doi.org/10.1038/ijo.2016.93
doi: 10.1038/ijo.2016.93
Johnson LA, Torres ERS, Impey S, Stevens JF, Raber J (2017) Apolipoprotein E4 and insulin resistance interact to impair cognition and alter the epigenome and metabolome. Sci Rep 7(1):43701. https://doi.org/10.1038/srep43701
doi: 10.1038/srep43701 pubmed: 28272510 pmcid: 5341123
Lynch CJ, Adams SH (2014) Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 10(12):723–736. https://doi.org/10.1038/nrendo.2014.171
doi: 10.1038/nrendo.2014.171 pubmed: 25287287 pmcid: 4424797
Zhou M, Shao J, Wu C-Y, Shu L, Dong W, Liu Y et al (2019) Targeting BCAA catabolism to treat obesity-associated insulin resistance. Diabetes 68(9):1730–1746. https://doi.org/10.2337/db18-0927
doi: 10.2337/db18-0927 pubmed: 31167878 pmcid: 6702639
White PJ, McGarrah RW, Herman MA, Bain JR, Shah SH, Newgard CB (2021) Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Mol. Metab. 52:101261. https://doi.org/10.1016/j.molmet.2021.101261
doi: 10.1016/j.molmet.2021.101261 pubmed: 34044180 pmcid: 8513145
Cheng S, Wiklund P, Autio R, Borra R, Ojanen X, Xu L et al (2015) Adipose tissue dysfunction and altered systemic amino acid metabolism are associated with non-alcoholic fatty liver disease. PLoS ONE 10(10):e0138889. https://doi.org/10.1371/journal.pone.0138889
doi: 10.1371/journal.pone.0138889 pubmed: 26439744 pmcid: 4595021
Tricò D, Biancalana E, Solini A (2021) Protein and amino acids in nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 24(1):96–101. https://doi.org/10.1097/MCO.0000000000000706
doi: 10.1097/MCO.0000000000000706 pubmed: 33060460
Holeček M (2020) Why are branched-chain amino acids increased in starvation and diabetes? Nutrients 12(10):3087. https://doi.org/10.3390/nu12103087
doi: 10.3390/nu12103087 pubmed: 33050579 pmcid: 7600358
Wagenmakers AJ, Schepens JT, Veerkamp JH (1984) Effect of starvation and exercise on actual and total activity of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues. Biochem J 223(3):815–821. https://doi.org/10.1042/bj2230815
doi: 10.1042/bj2230815 pubmed: 6508743 pmcid: 1144367
Biswas D, Tozer K, Dao KT, Perez LJ, Mercer A, Brown A et al (2020) Adverse outcomes in obese cardiac surgery patients correlates with altered branched-chain amino acid catabolism in adipose tissue and heart. Front Endocrinol 11:534. https://doi.org/10.3389/fendo.2020.00534
doi: 10.3389/fendo.2020.00534
Ding C, Egli L, Bosco N, Sun L, Goh HJ, Yeo KK et al (2021) Plasma branched-chain amino acids are associated with greater fasting and postprandial insulin secretion in non-diabetic Chinese adults. Front Nutr 8:664939. https://doi.org/10.3389/fnut.2021.664939
doi: 10.3389/fnut.2021.664939 pubmed: 33996878 pmcid: 8113402
Karjalainen J-P, Mononen N, Hutri-Kähönen N, Lehtimäki M, Juonala M, Ala-Korpela M et al (2019) The effect of apolipoprotein E polymorphism on serum metabolome—a population-based 10-year follow-up study. Sci Rep 9(1):458. https://doi.org/10.1038/s41598-018-36450-9
doi: 10.1038/s41598-018-36450-9 pubmed: 30679475 pmcid: 6346097
Lerin C, Goldfine AB, Boes T, Liu M, Kasif S, Dreyfuss JM et al (2016) Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism. Mol Metab 5(10):926–936. https://doi.org/10.1016/j.molmet.2016.08.001
doi: 10.1016/j.molmet.2016.08.001 pubmed: 27689005 pmcid: 5034611
White PJ, McGarrah RW, Grimsrud PA, Tso S-C, Yang W-H, Haldeman JM et al (2018) The BCKDH kinase and phosphatase integrate BCAA and lipid metabolism via regulation of ATP-citrate lyase. Cell Metab 27(6):1281-1293.e7. https://doi.org/10.1016/j.cmet.2018.04.015
doi: 10.1016/j.cmet.2018.04.015 pubmed: 29779826 pmcid: 5990471
Shoshan-Barmatz V, Maldonado EN, Krelin Y (2017) VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress. Cell Stress 1(1):11–36. https://doi.org/10.15698/cst2017.10.104
doi: 10.15698/cst2017.10.104 pubmed: 30542671 pmcid: 6287957
Walsh ME, Shi Y, van Remmen H (2014) The effects of dietary restriction on oxidative stress in rodents. Free Radic Biol Med 66:88–99. https://doi.org/10.1016/j.freeradbiomed.2013.05.037
doi: 10.1016/j.freeradbiomed.2013.05.037 pubmed: 23743291
Menezes-Filho SL, Amigo I, Prado FM, Ferreira NC, Koike MK, Pinto IFD et al (2017) Caloric restriction protects livers from ischemia/reperfusion damage by preventing Ca
doi: 10.1016/j.freeradbiomed.2017.06.013 pubmed: 28642067
Szabó I, Zoratti M (1993) The mitochondrial permeability transition pore may comprise VDAC molecules. I. Binary structure and voltage dependence of the pore. FEBS Lett 330(2):201–205. https://doi.org/10.1016/0014-5793(93)80273-w
doi: 10.1016/0014-5793(93)80273-w pubmed: 7689983
Madreiter-Sokolowski CT, Thomas C, Ristow M (2020) Interrelation between ROS and Ca
doi: 10.1016/j.redox.2020.101678 pubmed: 32810740 pmcid: 7451758
Suski M, Olszanecki R, Madej J, Totoń-Żurańska J, Niepsuj A, Jawień J et al (2011) Proteomic analysis of changes in protein expression in liver mitochondria in apoE knockout mice. J Proteomics 74(6):887–893. https://doi.org/10.1016/j.jprot.2011.03.003
doi: 10.1016/j.jprot.2011.03.003 pubmed: 21406262
James R, Searcy JL, Le Bihan T, Martin SF, Gliddon CM, Povey J et al (2012) Proteomic analysis of mitochondria in APOE transgenic mice and in response to an ischemic challenge. J Cereb Blood Flow Metab 32(1):164–176. https://doi.org/10.1038/jcbfm.2011.120
doi: 10.1038/jcbfm.2011.120 pubmed: 21878944
Vance JE (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 265(13):7248–7256. https://doi.org/10.1016/S0021-9258(19)39106-9
doi: 10.1016/S0021-9258(19)39106-9 pubmed: 2332429
Hamilton RL, Wong JS, Guo LS, Krisans S, Havel RJ (1990) Apolipoprotein E localization in rat hepatocytes by immunogold labeling of cryothin sections. J Lipid Res 31(9):1589–1603
doi: 10.1016/S0022-2275(20)42343-0 pubmed: 2246612
Rueter J, Rimbach G, Huebbe P (2022) Functional diversity of apolipoprotein E: from subcellular localization to mitochondrial function. Cell Mol Life Sci 79(9):499. https://doi.org/10.1007/s00018-022-04516-7
doi: 10.1007/s00018-022-04516-7 pubmed: 36018414 pmcid: 9418098

Auteurs

Johanna Rueter (J)

Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany.

Gerald Rimbach (G)

Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany. rimbach@foodsci.uni-kiel.de.

Christian Treitz (C)

Institute of Experimental Medicine, University of Kiel, Niemannsweg 11, 24105, Kiel, Germany.

Anke Schloesser (A)

Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany.

Kai Lüersen (K)

Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany.

Andreas Tholey (A)

Institute of Experimental Medicine, University of Kiel, Niemannsweg 11, 24105, Kiel, Germany.

Patricia Huebbe (P)

Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6, 24118, Kiel, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH