Ependyma: a new target for autoantibodies in neuromyelitis optica?
aquaporin-4
cilia
ependymal cell
neuromyelitis optica
sub-ventricular zone
Journal
Brain communications
ISSN: 2632-1297
Titre abrégé: Brain Commun
Pays: England
ID NLM: 101755125
Informations de publication
Date de publication:
2022
2022
Historique:
received:
01
03
2022
revised:
26
08
2022
accepted:
28
11
2022
entrez:
8
2
2023
pubmed:
9
2
2023
medline:
9
2
2023
Statut:
epublish
Résumé
Neuromyelitis optica (NMO) is an autoimmune demyelinating disease of the central nervous system characterized by the presence of autoantibodies (called NMO-IgG) targeting aquaporin-4. Aquaporin-4 is expressed at the perivascular foot processes of astrocytes, in the glia limitans, but also at the ependyma. Most studies have focused on studying the pathogenicity of NMO-IgG on astrocytes, and NMO is now considered an astrocytopathy. However, periependymal lesions are observed in NMO suggesting that ependymal cells could also be targeted by NMO-IgG. Ependymal cells regulate CSF-parenchyma molecular exchanges and CSF flow, and are a niche for sub-ventricular neural stem cells. Our aim was to examine the effect of antibodies from NMO patients on ependymal cells. We exposed two models, i.e. primary cultures of rat ependymal cells and explant cultures of rat lateral ventricular wall whole mounts, to purified IgG of NMO patients (NMO-IgG) for 24 hours. We then evaluated the treatment effect using immunolabelling, functional assays, ependymal flow analysis and bulk RNA sequencing. For each experiment, the effects were compared with those of purified IgG from a healthy donors and non-treated cells. We found that: (i) NMO-IgG induced aquaporin-4 agglomeration at the surface of ependymal cells and induced cell enlargement in comparison to controls. In parallel, it induced an increase in gap junction connexin-43 plaque size; (ii) NMO-IgG altered the orientation of ciliary basal bodies and functionally impaired cilia motility; (iii) NMO-IgG activated the proliferation of sub-ventricular neural stem cells; (iv) treatment with NMO-IgG up-regulated the expression of pro-inflammatory cytokines and chemokines in the transcriptomic analysis. Our study showed that NMO-IgG can trigger an early and specific reactive phenotype in ependymal cells, with functional alterations of intercellular communication and cilia, activation of sub-ventricular stem cell proliferation and the secretion of pro-inflammatory cytokines. These findings suggest a key role for ependymal cells in the early phase of NMO lesion formation.
Identifiants
pubmed: 36751497
doi: 10.1093/braincomms/fcac307
pii: fcac307
pmc: PMC9897195
doi:
Types de publication
Journal Article
Langues
eng
Pagination
fcac307Informations de copyright
© The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain.
Références
J Vis Exp. 2010 May 06;(39):
pubmed: 20461052
Front Neurosci. 2015 Feb 12;9:16
pubmed: 25729345
Cell Rep. 2018 Nov 27;25(9):2457-2469.e8
pubmed: 30485812
J Neurosci. 2005 Jan 5;25(1):10-8
pubmed: 15634762
Arch Med Sci. 2018 Mar;14(2):313-320
pubmed: 29593804
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
PLoS One. 2020 Sep 3;15(9):e0238301
pubmed: 32881954
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
pubmed: 16199517
Mult Scler. 2012 Jul;18(7):1050-3
pubmed: 22183933
Nat Rev Mol Cell Biol. 2017 Jul;18(7):423-436
pubmed: 28400610
Acta Neuropathol. 2013 Jun;125(6):815-27
pubmed: 23579868
Neurochem Res. 2007 Jun;32(6):1028-35
pubmed: 17401674
Science. 2006 Feb 3;311(5761):629-32
pubmed: 16410488
Acta Neuropathol. 2017 Apr;133(4):597-612
pubmed: 28184993
J Neurol Sci. 2011 Dec 15;311(1-2):69-77
pubmed: 21962794
Genome Biol. 2014;15(12):550
pubmed: 25516281
Nat Biotechnol. 2016 May;34(5):525-7
pubmed: 27043002
Mult Scler. 2013 Aug;19(9):1204-8
pubmed: 23322500
Cell Tissue Res. 1987 Jun;248(3):619-25
pubmed: 3607852
Neurology. 2015 Jul 14;85(2):177-89
pubmed: 26092914
PLoS One. 2010 Nov 15;5(11):e13984
pubmed: 21085593
Brain Pathol. 2014 Jan;24(1):83-97
pubmed: 24345222
Acta Pharmacol Sin. 2011 Jun;32(6):702-10
pubmed: 21552296
Nat Rev Immunol. 2009 Jun;9(6):449-56
pubmed: 19424277
Front Biosci. 2008 Jan 01;13:2633-52
pubmed: 17981739
Ann Neurol. 2014 Aug;76(2):305-9
pubmed: 24977390
Cell Stem Cell. 2021 Feb 4;28(2):285-299.e9
pubmed: 33207218
Acta Neurol Scand. 2017 Mar;135(3):324-331
pubmed: 27098675
Brain. 2020 Sep 1;143(9):2721-2732
pubmed: 32889550
Brain Res. 1986 Mar;390(2):199-209
pubmed: 3955370
Brain. 2021 Sep 4;144(8):2401-2415
pubmed: 33711152
Brain Res. 2006 Sep 13;1109(1):164-75
pubmed: 16904080
J Neuroinflammation. 2016 May 18;13(1):111
pubmed: 27193196
Int J Mol Sci. 2021 May 14;22(10):
pubmed: 34068922
Lancet. 2004 Dec 11-17;364(9451):2106-12
pubmed: 15589308
Biochim Biophys Acta Mol Basis Dis. 2019 Oct 1;1865(10):2694-2705
pubmed: 31348989
Eur J Ophthalmol. 2021 Jul 3;:11206721211028050
pubmed: 34218696
Cereb Cortex. 2013 Mar;23(3):647-59
pubmed: 22414771
Brain Pathol. 2020 Jan;30(1):13-25
pubmed: 31587392
Glia. 2017 May;65(5):756-772
pubmed: 28191668
J Neuroimmunol. 2014 Apr 15;269(1-2):62-7
pubmed: 24582827
Nat Commun. 2018 Jun 11;9(1):2279
pubmed: 29891944
Brain. 2010 Sep;133(9):2578-91
pubmed: 20688809
Prog Retin Eye Res. 2008 Jul;27(4):391-419
pubmed: 18632300
Cell Stem Cell. 2008 Sep 11;3(3):265-78
pubmed: 18786414
Acta Neuropathol. 2010 Jan;119(1):55-73
pubmed: 20024659
Cell Rep. 2017 Jul 25;20(4):960-972
pubmed: 28746879
Nat Commun. 2020 Apr 20;11(1):1860
pubmed: 32312952
Glia. 2014 May;62(5):692-708
pubmed: 24492996
J Neuroimmunol. 2013 Jan 15;254(1-2):76-82
pubmed: 23031833
Arch Neurol. 2006 Jul;63(7):964-8
pubmed: 16831965
Cell. 2018 May 3;173(4):1045-1057.e9
pubmed: 29727663
J Neurosci. 1997 Jan 1;17(1):171-80
pubmed: 8987746
Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1245-50
pubmed: 22128336