Targeted photodynamic neutralization of SARS-CoV-2 mediated by singlet oxygen.


Journal

Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
ISSN: 1474-9092
Titre abrégé: Photochem Photobiol Sci
Pays: England
ID NLM: 101124451

Informations de publication

Date de publication:
Jun 2023
Historique:
received: 30 07 2022
accepted: 23 01 2023
medline: 3 7 2023
pubmed: 9 2 2023
entrez: 8 2 2023
Statut: ppublish

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has been on a rampage for more than two years. Vaccines in combination with neutralizing antibodies (NAbs) against SARS-CoV-2 carry great hope in the treatment and final elimination of coronavirus disease 2019 (COVID-19). However, the relentless emergence of variants of concern (VOC), including the most recent Omicron variants, presses for novel measures to counter these variants that often show immune evasion. Hereby we developed a targeted photodynamic approach to neutralize SARS-CoV-2 by engineering a genetically encoded photosensitizer (SOPP3) to a diverse list of antibodies targeting the wild-type (WT) spike protein, including human antibodies isolated from a 2003 Severe acute respiratory syndrome (SARS) patient, potent monomeric and multimeric nanobodies targeting receptor-binding domain (RBD), and non-neutralizing antibodies (non-NAbs) targeting the more conserved N-terminal domain (NTD). As confirmed by pseudovirus neutralization assay, this targeted photodynamic approach significantly increased the efficacy of these antibodies, especially that of non-NAbs, against not only the WT but also the Delta strain and the heavily immune escape Omicron strain (BA.1). Subsequent measurement of infrared phosphorescence at 1270 nm confirmed the generation of singlet oxygen (

Identifiants

pubmed: 36753022
doi: 10.1007/s43630-023-00381-w
pii: 10.1007/s43630-023-00381-w
pmc: PMC9906597
doi:

Substances chimiques

Singlet Oxygen 17778-80-2
Spike Glycoprotein, Coronavirus 0
spike protein, SARS-CoV-2 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1323-1340

Subventions

Organisme : National Natural Science Foundation of China
ID : 32171150

Informations de copyright

© 2023. The Author(s), under exclusive licence to European Photochemistry Association, European Society for Photobiology.

Références

Agostinis, P., Berg, K., Cengel, K. A., et al. (2011). Photodynamic therapy of cancer: An update. CA: A Cancer Journal for Clinicians, 61, 250–281.
pubmed: 21617154
McCaughan, J. S., Jr. (1999). Photodynamic therapy: A review. Drugs and Aging, 15, 49–68.
pubmed: 10459732 doi: 10.2165/00002512-199915010-00005
Wainwright, M. (1998). Photodynamic antimicrobial chemotherapy (PACT). Journal of Antimicrobial Chemotherapy, 42, 13–28.
pubmed: 9700525 doi: 10.1093/jac/42.1.13
Correia, J. H., Rodrigues, J. A., Pimenta, S., Dong, T., & Yang, Z. (2021). Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics, 13, 1332.
pubmed: 34575408 pmcid: 8470722 doi: 10.3390/pharmaceutics13091332
Li, X., Lovell, J. F., Yoon, J., & Chen, X. (2020). Clinical development and potential of photothermal and photodynamic therapies for cancer. Nature Reviews. Clinical Oncology, 17, 657–674.
pubmed: 32699309 doi: 10.1038/s41571-020-0410-2
Huang, Z. (2005). A review of progress in clinical photodynamic therapy. Technology in Cancer Research & Treatment, 4, 283–293.
doi: 10.1177/153303460500400308
Dougherty, T. J., Gomer, C. J., Henderson, B. W., et al. (1998). Photodynamic therapy. Journal of the National Cancer Institute, 90, 889–905.
pubmed: 9637138 doi: 10.1093/jnci/90.12.889
Li, B., Lin, L., Lin, H., & Wilson, B. C. (2016). Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy. Journal of Biophotonics, 9, 1314–1325.
pubmed: 27136270 doi: 10.1002/jbio.201600055
Dolmans, D. E., Fukumura, D., & Jain, R. K. (2003). Photodynamic therapy for cancer. Nature Reviews Cancer, 3, 380–387.
pubmed: 12724736 doi: 10.1038/nrc1071
Bulina, M. E., Lukyanov, K. A., Britanova, O. V., Onichtchouk, D., Lukyanov, S., & Chudakov, D. M. (2006). Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed. Nature Protocols, 1, 947–953.
pubmed: 17406328 doi: 10.1038/nprot.2006.89
Ogilby, P. R. (2010). Singlet oxygen: There is indeed something new under the sun. Chemical Society Reviews, 39, 3181–3209.
pubmed: 20571680 doi: 10.1039/b926014p
Hatz, S., Lambert, J. D., & Ogilby, P. R. (2007). Measuring the lifetime of singlet oxygen in a single cell: Addressing the issue of cell viability. Photochemical & Photobiological Sciences, 6, 1106–1116.
doi: 10.1039/b707313e
Skovsen, E., Snyder, J. W., Lambert, J. D., & Ogilby, P. R. (2005). Lifetime and diffusion of singlet oxygen in a cell. The Journal of Physical Chemistry B, 109, 8570–8573.
pubmed: 16852012 doi: 10.1021/jp051163i
Redmond, R. W., & Kochevar, I. E. (2006). Spatially resolved cellular responses to singlet oxygen. Photochemistry and Photobiology, 82, 1178–1186.
pubmed: 16740059 doi: 10.1562/2006-04-14-IR-874
Konda, P., Roque Iii, J. A., Lifshits, L. M., et al. (2022). Photodynamic therapy of melanoma with new, structurally similar, NIR-absorbing ruthenium (II) complexes promotes tumor growth control via distinct hallmarks of immunogenic cell death. American Journal of Cancer Research, 12, 210–228.
pubmed: 35141014 pmcid: 8822289
Correia-Barros, G., Serambeque, B., Carvalho, M. J., et al. (2022). Applications of photodynamic therapy in endometrial diseases. Bioengineering (Basel), 9, 226.
pubmed: 35621504 doi: 10.3390/bioengineering9050226
Bartusik-Aebisher, D., Zolyniak, A., Barnas, E., et al. (2022). The use of photodynamic therapy in the treatment of brain tumors-a review of the literature. Molecules, 27, 6847.
pubmed: 36296440 pmcid: 9607067 doi: 10.3390/molecules27206847
He, L., Yu, X., & Li, W. (2022). Recent progress and trends in X-ray-induced photodynamic therapy with low radiation doses. ACS Nano, 16, 19691–19721.
pubmed: 36378555 doi: 10.1021/acsnano.2c07286
Hamblin, M. R., & Hasan, T. (2004). Photodynamic therapy: A new antimicrobial approach to infectious disease? Photochemical & Photobiological Sciences, 3, 436–450.
doi: 10.1039/b311900a
Sadraeian, M., da Cruz, E. F., Boyle, R. W., et al. (2021). Photoinduced photosensitizer-antibody conjugates kill HIV Env-expressing cells also inactivating HIV. ACS Omega, 6, 16524–16534.
pubmed: 34235324 pmcid: 8246456 doi: 10.1021/acsomega.1c01721
Anas, A., Sobhanan, J., Sulfiya, K. M., Jasmin, C., Sreelakshmi, P. K., & Biju, V. (2021). Advances in photodynamic antimicrobial chemotherapy. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 49, 100452.
doi: 10.1016/j.jphotochemrev.2021.100452
Wang, X., Luo, D., & Basilion, J. P. (2021). Photodynamic therapy: targeting cancer biomarkers for the treatment of cancers. Cancers (Basel), 13, 2992.
pubmed: 34203805 doi: 10.3390/cancers13122992
Zeina, B., Greenman, J., Corry, D., & Purcell, W. M. (2003). Antimicrobial photodynamic therapy: Assessment of genotoxic effects on keratinocytes in vitro. British Journal of Dermatology, 148, 229–232.
pubmed: 12588372 doi: 10.1046/j.1365-2133.2003.05091.x
Hampden-Martin, A., Fothergill, J., El Mohtadi, M., et al. (2021). Photodynamic antimicrobial chemotherapy coupled with the use of the photosensitizers methylene blue and temoporfin as a potential novel treatment for Staphylococcus aureus in burn infections. Access Microbiol, 3, 000273.
pubmed: 34816092 pmcid: 8604179 doi: 10.1099/acmi.0.000273
Bugaj, A. M. (2011). Targeted photodynamic therapy–a promising strategy of tumor treatment. Photochemical & Photobiological Sciences, 10, 1097–1109.
doi: 10.1039/c0pp00147c
Lu, R., Zhao, X., Li, J., et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395, 565–574.
doi: 10.1016/S0140-6736(20)30251-8
Li, W. H., Moore, M. J., Vasilieva, N., et al. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426, 450–454.
pubmed: 14647384 pmcid: 7095016 doi: 10.1038/nature02145
Jackson, C. B., Farzan, M., Chen, B., & Choe, H. (2022). Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology, 23, 3–20.
pubmed: 34611326 doi: 10.1038/s41580-021-00418-x
Park, Y. J., De Marco, A., Starr, T. N., et al. (2022). Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science, 375, 449–454.
pubmed: 34990214 pmcid: 9400459 doi: 10.1126/science.abm8143
Zhang, L., Dutta, S., Xiong, S., et al. (2022). Engineered ACE2 decoy mitigates lung injury and death induced by SARS-CoV-2 variants. Nature Chemical Biology, 18, 342–351.
pubmed: 35046611 pmcid: 8885411 doi: 10.1038/s41589-021-00965-6
Hoffmann, M., Kleine-Weber, H., & Pohlmann, S. (2020). A multibasic cleavage site in the spike protein of SARS-CoV-2 Is essential for infection of human lung cells. Molecular Cell, 78(779–784), e775.
Hoffmann, M., Kleine-Weber, H., Schroeder, S., et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(271–280), e278.
Cai, Y., Zhang, J., Xiao, T., et al. (2020). Distinct conformational states of SARS-CoV-2 spike protein. Science, 369, 1586–1592.
pubmed: 32694201 doi: 10.1126/science.abd4251
Raybould, M. I. J., Kovaltsuk, A., Marks, C., & Deane, C. M. (2021). CoV-AbDab: The coronavirus antibody database. Bioinformatics, 37, 734–735.
pubmed: 32805021 doi: 10.1093/bioinformatics/btaa739
Liu, L., Iketani, S., Guo, Y., et al. (2021). Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature. https://doi.org/10.1038/d41586-021-03826-3
doi: 10.1038/d41586-021-03826-3 pubmed: 35016198 pmcid: 9763054
Hoffmann, M., Kruger, N., Schulz, S., et al. (2021). The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell, 185, 4470–5456.
Cao, Y., Wang, J., Jian, F., et al. (2021). Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 602, 657–663.
pubmed: 35016194 pmcid: 8866119 doi: 10.1038/s41586-021-04385-3
Yewdell, J. W. (2021). Antigenic drift: understanding COVID-19. Immunity, 54, 2681–2687.
pubmed: 34910934 pmcid: 8669911 doi: 10.1016/j.immuni.2021.11.016
Nabel, K. G., Clark, S. A., Shankar, S., et al. (2022). Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science, 375, eabl6251.
pubmed: 34855508 doi: 10.1126/science.abl6251
Harvey, W. T., Carabelli, A. M., Jackson, B., et al. (2021). SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology, 19, 409–424.
pubmed: 34075212 pmcid: 8167834 doi: 10.1038/s41579-021-00573-0
Kipshidze, N., Yeo, N., & Kipshidze, N. (2020). Photodynamic therapy for COVID-19. Nature Photonics, 14, 651–652.
doi: 10.1038/s41566-020-00703-9
Svyatchenko, V. A., Nikonov, S. D., Mayorov, A. P., Gelfond, M. L., & Loktev, V. B. (2021). Antiviral photodynamic therapy: inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and radachlorin. Photodiagnosis and Photodynamic Therapy, 33, 102112.
pubmed: 33249118 doi: 10.1016/j.pdpdt.2020.102112
Lobo, C. S., Rodrigues-Santos, P., Pereira, D., et al. (2022). Photodynamic disinfection of SARS-CoV-2 clinical samples using a methylene blue formulation. Photochemical & Photobiological Sciences, 21, 1101–1109.
doi: 10.1007/s43630-022-00202-6
Zupin, L., Fontana, F., Clemente, L., et al. (2022). Optimization of anti-SARS-CoV-2 treatments based on curcumin, used alone or employed as a photosensitizer. Viruses, 14, 2132.
pubmed: 36298687 pmcid: 9608677 doi: 10.3390/v14102132
Ziganshyna, S., Szczepankiewicz, G., Kuehnert, M., et al. (2022). Photodynamic inactivation of SARS-CoV-2 infectivity and antiviral treatment effects in vitro. Viruses, 14, 1301.
pubmed: 35746772 pmcid: 9229166 doi: 10.3390/v14061301
Pires, L., Wilson, B. C., Bremner, R., et al. (2022). Translational feasibility and efficacy of nasal photodynamic disinfection of SARS-CoV-2. Science and Reports, 12, 14438.
doi: 10.1038/s41598-022-18513-0
Duguay, B. A., Herod, A., Pringle, E. S., et al. (2022). Photodynamic inactivation of human coronaviruses. Viruses, 14, 110.
pubmed: 35062314 pmcid: 8779093 doi: 10.3390/v14010110
Crocker, L. B., Lee, J. H., Mital, S., et al. (2022). Tuning riboflavin derivatives for photodynamic inactivation of pathogens. Science and Reports, 12, 6580.
doi: 10.1038/s41598-022-10394-7
Yu, S., Sun, G., Sui, Y., et al. (2021). Potent inhibition of severe acute respiratory syndrome coronavirus 2 by photosensitizers compounds. Dyes and Pigments, 194, 109570.
pubmed: 34183871 pmcid: 8216852 doi: 10.1016/j.dyepig.2021.109570
Pinto, D., Park, Y. J., Beltramello, M., et al. (2020). Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 583, 290–295.
pubmed: 32422645 doi: 10.1038/s41586-020-2349-y
Schoof, M., Faust, B., Saunders, R. A., et al. (2020). An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science, 370, 1473–1479.
pubmed: 33154106 pmcid: 7857409 doi: 10.1126/science.abe3255
Li, D., Edwards, R. J., Manne, K., et al. (2021). In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 184(4203–4219), e4232.
Pymm, P., Adair, A., Chan, L. J., et al. (2021). Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice. Proceedings of the National Academy of Sciences USA. https://doi.org/10.1073/pnas.2101918118
doi: 10.1073/pnas.2101918118
Westberg, M., Etzerodt, M., & Ogilby, P. R. (2019). Rational design of genetically encoded singlet oxygen photosensitizing proteins. Current Opinion in Structural Biology, 57, 56–62.
pubmed: 30875586 doi: 10.1016/j.sbi.2019.01.025
Baier, J., Maisch, T., Maier, M., Engel, E., Landthaler, M., & Baumler, W. (2006). Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophysical Journal, 91, 1452–1459.
pubmed: 16751234 pmcid: 1518628 doi: 10.1529/biophysj.106.082388
Westberg, M., Holmegaard, L., Pimenta, F. M., Etzerodt, M., & Ogilby, P. R. (2015). Rational design of an efficient, genetically encodable, protein-encased singlet oxygen photosensitizer. Journal of the American Chemical Society, 137, 1632–1642.
pubmed: 25575190 doi: 10.1021/ja511940j
Westberg, M., Bregnhoj, M., Etzerodt, M., & Ogilby, P. R. (2017). No photon wasted: an efficient and selective singlet oxygen photosensitizing protein. The Journal of Physical Chemistry B, 121, 9366–9371.
pubmed: 28892628 doi: 10.1021/acs.jpcb.7b07831
Lok, S. M. (2021). An NTD supersite of attack. Cell Host & Microbe, 29, 744–746.
doi: 10.1016/j.chom.2021.04.010
Cerutti, G., Guo, Y., Zhou, T., et al. (2021). Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host & Microbe, 29(819–833), e817.
Niedre, M. J., Yu, C. S., Patterson, M. S., & Wilson, B. C. (2005). Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: Validation in normal mouse skin with topical amino-levulinic acid. British Journal of Cancer, 92, 298–304.
pubmed: 15655542 pmcid: 2361839 doi: 10.1038/sj.bjc.6602331
Michaeli, A., & Feitelson, J. (1994). Reactivity of singlet oxygen toward amino acids and peptides. Photochemistry and Photobiology, 59, 284–289.
pubmed: 8016206 doi: 10.1111/j.1751-1097.1994.tb05035.x
Bisby, R. H., Morgan, C. G., Hamblett, I., & Gorman, A. A. (1999). Quenching of singlet oxygen by Trolox C, ascorbate, and amino acids: Effects of pH and temperature. Journal of Physical Chemistry A, 103, 7454–7459.
doi: 10.1021/jp990838c
Rykaer, M., Svensson, B., Davies, M. J., & Hagglund, P. (2017). Unrestricted mass spectrometric data analysis for identification, localization, and quantification of oxidative protein modifications. Journal of Proteome Research, 16, 3978–3988.
pubmed: 28920440 doi: 10.1021/acs.jproteome.7b00330
Bachi, A., Dalle-Donne, I., & Scaloni, A. (2013). Redox proteomics: Chemical principles, methodological approaches and biological/biomedical promises. Chemical Reviews, 113, 596–698.
pubmed: 23181411 doi: 10.1021/cr300073p
Gobeil, S. M., Janowska, K., McDowell, S., et al. (2021). Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science, 373, 6555.
doi: 10.1126/science.abi6226
Tan, Z. W., Tee, W. V., Samsudin, F., Guarnera, E., Bond, P. J., & Berezovsky, I. N. (2022). Allosteric perspective on the mutability and druggability of the SARS-CoV-2 Spike protein. Structure, 588, 682.
Lu, Y., Wang, J., Li, Q., Hu, H., Lu, J., & Chen, Z. (2021). Advances in neutralization assays for SARS-CoV-2. Scandinavian Journal of Immunology, 94, e13088.
pmcid: 8236914 doi: 10.1111/sji.13088
Kim, M. M., & Darafsheh, A. (2020). Light sources and dosimetry techniques for photodynamic therapy. Photochemistry and Photobiology, 96, 280–294.
pubmed: 32003006 doi: 10.1111/php.13219
Sarkisyan, K. S., Zlobovskaya, O. A., Gorbachev, D. A., et al. (2015). KillerOrange, a genetically encoded photosensitizer activated by blue and green light. PLoS ONE, 10, e0145287.
pubmed: 26679300 pmcid: 4683004 doi: 10.1371/journal.pone.0145287
Riani, Y. D., Matsuda, T., & Nagai, T. (2021). Genetically encoded photosensitizer for destruction of protein or cell function. Advances in Experimental Medicine and Biology, 1293, 265–279.
pubmed: 33398819 doi: 10.1007/978-981-15-8763-4_16
Gautier, A., & Hinner, M. J. (2015). Site-specific protein labeling: methods and protocols. New York: Humana Press Springer.
doi: 10.1007/978-1-4939-2272-7
Falck, G., & Muller, K. M. (2018). Enzyme-based labeling strategies for antibody-drug conjugates and antibody mimetics. Antibodies (Basel), 7, 4.
pubmed: 31544857 doi: 10.3390/antib7010004
Mogensen, D. J., Etzerodt, M., & Ogilby, P. R. (2022). Photoinduced bleaching in an efficient singlet oxygen photosensitizing protein: Identifying a culprit in the flavin-binding LOV-based protein SOPP3. Journal of Photochemistry and Photobiology A: Chemistry, 429, 113894.
doi: 10.1016/j.jphotochem.2022.113894
Mogensen, D. J., Westberg, M., Breitenbach, T., Etzerodt, M., & Ogilby, P. R. (2021). Stable transfection of the singlet oxygen photosensitizing protein SOPP3: examining aspects of intracellular behavior. Photochemistry and Photobiology, 97, 1417–1430.
pubmed: 33934354 doi: 10.1111/php.13440
Li, Y., Wang, H., Tang, X., et al. (2020). SARS-CoV-2 and three related coronaviruses utilize multiple ACE2 orthologs and are potently blocked by an improved ACE2-Ig. Journal of Virology. https://doi.org/10.1128/JVI.01283-20
doi: 10.1128/JVI.01283-20 pubmed: 33361430 pmcid: 7944438
Jumper, J., Evans, R., Pritzel, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589.
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Sali, A., Potterton, L., Yuan, F., van Vlijmen, H., & Karplus, M. (1995). Evaluation of comparative protein modeling by MODELLER. Proteins, 23, 318–326.
pubmed: 8710825 doi: 10.1002/prot.340230306
Lindahl, E., Hess, B., & van der Spoel, D. (2001). GROMACS 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7, 306–317.
doi: 10.1007/s008940100045

Auteurs

Ruhui Yao (R)

Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, People's Republic of China.

Jian Hou (J)

Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, People's Republic of China.

Xin Zhang (X)

Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, People's Republic of China.

Yi Li (Y)

Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, People's Republic of China.

Junhui Lai (J)

Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, People's Republic of China.

Qinqin Wu (Q)

Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, People's Republic of China.

Qinglian Liu (Q)

Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.

Lei Zhou (L)

Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, People's Republic of China. zhoulei@szbl.ac.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH