Targeted photodynamic neutralization of SARS-CoV-2 mediated by singlet oxygen.
Journal
Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
ISSN: 1474-9092
Titre abrégé: Photochem Photobiol Sci
Pays: England
ID NLM: 101124451
Informations de publication
Date de publication:
Jun 2023
Jun 2023
Historique:
received:
30
07
2022
accepted:
23
01
2023
medline:
3
7
2023
pubmed:
9
2
2023
entrez:
8
2
2023
Statut:
ppublish
Résumé
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has been on a rampage for more than two years. Vaccines in combination with neutralizing antibodies (NAbs) against SARS-CoV-2 carry great hope in the treatment and final elimination of coronavirus disease 2019 (COVID-19). However, the relentless emergence of variants of concern (VOC), including the most recent Omicron variants, presses for novel measures to counter these variants that often show immune evasion. Hereby we developed a targeted photodynamic approach to neutralize SARS-CoV-2 by engineering a genetically encoded photosensitizer (SOPP3) to a diverse list of antibodies targeting the wild-type (WT) spike protein, including human antibodies isolated from a 2003 Severe acute respiratory syndrome (SARS) patient, potent monomeric and multimeric nanobodies targeting receptor-binding domain (RBD), and non-neutralizing antibodies (non-NAbs) targeting the more conserved N-terminal domain (NTD). As confirmed by pseudovirus neutralization assay, this targeted photodynamic approach significantly increased the efficacy of these antibodies, especially that of non-NAbs, against not only the WT but also the Delta strain and the heavily immune escape Omicron strain (BA.1). Subsequent measurement of infrared phosphorescence at 1270 nm confirmed the generation of singlet oxygen (
Identifiants
pubmed: 36753022
doi: 10.1007/s43630-023-00381-w
pii: 10.1007/s43630-023-00381-w
pmc: PMC9906597
doi:
Substances chimiques
Singlet Oxygen
17778-80-2
Spike Glycoprotein, Coronavirus
0
spike protein, SARS-CoV-2
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1323-1340Subventions
Organisme : National Natural Science Foundation of China
ID : 32171150
Informations de copyright
© 2023. The Author(s), under exclusive licence to European Photochemistry Association, European Society for Photobiology.
Références
Agostinis, P., Berg, K., Cengel, K. A., et al. (2011). Photodynamic therapy of cancer: An update. CA: A Cancer Journal for Clinicians, 61, 250–281.
pubmed: 21617154
McCaughan, J. S., Jr. (1999). Photodynamic therapy: A review. Drugs and Aging, 15, 49–68.
pubmed: 10459732
doi: 10.2165/00002512-199915010-00005
Wainwright, M. (1998). Photodynamic antimicrobial chemotherapy (PACT). Journal of Antimicrobial Chemotherapy, 42, 13–28.
pubmed: 9700525
doi: 10.1093/jac/42.1.13
Correia, J. H., Rodrigues, J. A., Pimenta, S., Dong, T., & Yang, Z. (2021). Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics, 13, 1332.
pubmed: 34575408
pmcid: 8470722
doi: 10.3390/pharmaceutics13091332
Li, X., Lovell, J. F., Yoon, J., & Chen, X. (2020). Clinical development and potential of photothermal and photodynamic therapies for cancer. Nature Reviews. Clinical Oncology, 17, 657–674.
pubmed: 32699309
doi: 10.1038/s41571-020-0410-2
Huang, Z. (2005). A review of progress in clinical photodynamic therapy. Technology in Cancer Research & Treatment, 4, 283–293.
doi: 10.1177/153303460500400308
Dougherty, T. J., Gomer, C. J., Henderson, B. W., et al. (1998). Photodynamic therapy. Journal of the National Cancer Institute, 90, 889–905.
pubmed: 9637138
doi: 10.1093/jnci/90.12.889
Li, B., Lin, L., Lin, H., & Wilson, B. C. (2016). Photosensitized singlet oxygen generation and detection: Recent advances and future perspectives in cancer photodynamic therapy. Journal of Biophotonics, 9, 1314–1325.
pubmed: 27136270
doi: 10.1002/jbio.201600055
Dolmans, D. E., Fukumura, D., & Jain, R. K. (2003). Photodynamic therapy for cancer. Nature Reviews Cancer, 3, 380–387.
pubmed: 12724736
doi: 10.1038/nrc1071
Bulina, M. E., Lukyanov, K. A., Britanova, O. V., Onichtchouk, D., Lukyanov, S., & Chudakov, D. M. (2006). Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed. Nature Protocols, 1, 947–953.
pubmed: 17406328
doi: 10.1038/nprot.2006.89
Ogilby, P. R. (2010). Singlet oxygen: There is indeed something new under the sun. Chemical Society Reviews, 39, 3181–3209.
pubmed: 20571680
doi: 10.1039/b926014p
Hatz, S., Lambert, J. D., & Ogilby, P. R. (2007). Measuring the lifetime of singlet oxygen in a single cell: Addressing the issue of cell viability. Photochemical & Photobiological Sciences, 6, 1106–1116.
doi: 10.1039/b707313e
Skovsen, E., Snyder, J. W., Lambert, J. D., & Ogilby, P. R. (2005). Lifetime and diffusion of singlet oxygen in a cell. The Journal of Physical Chemistry B, 109, 8570–8573.
pubmed: 16852012
doi: 10.1021/jp051163i
Redmond, R. W., & Kochevar, I. E. (2006). Spatially resolved cellular responses to singlet oxygen. Photochemistry and Photobiology, 82, 1178–1186.
pubmed: 16740059
doi: 10.1562/2006-04-14-IR-874
Konda, P., Roque Iii, J. A., Lifshits, L. M., et al. (2022). Photodynamic therapy of melanoma with new, structurally similar, NIR-absorbing ruthenium (II) complexes promotes tumor growth control via distinct hallmarks of immunogenic cell death. American Journal of Cancer Research, 12, 210–228.
pubmed: 35141014
pmcid: 8822289
Correia-Barros, G., Serambeque, B., Carvalho, M. J., et al. (2022). Applications of photodynamic therapy in endometrial diseases. Bioengineering (Basel), 9, 226.
pubmed: 35621504
doi: 10.3390/bioengineering9050226
Bartusik-Aebisher, D., Zolyniak, A., Barnas, E., et al. (2022). The use of photodynamic therapy in the treatment of brain tumors-a review of the literature. Molecules, 27, 6847.
pubmed: 36296440
pmcid: 9607067
doi: 10.3390/molecules27206847
He, L., Yu, X., & Li, W. (2022). Recent progress and trends in X-ray-induced photodynamic therapy with low radiation doses. ACS Nano, 16, 19691–19721.
pubmed: 36378555
doi: 10.1021/acsnano.2c07286
Hamblin, M. R., & Hasan, T. (2004). Photodynamic therapy: A new antimicrobial approach to infectious disease? Photochemical & Photobiological Sciences, 3, 436–450.
doi: 10.1039/b311900a
Sadraeian, M., da Cruz, E. F., Boyle, R. W., et al. (2021). Photoinduced photosensitizer-antibody conjugates kill HIV Env-expressing cells also inactivating HIV. ACS Omega, 6, 16524–16534.
pubmed: 34235324
pmcid: 8246456
doi: 10.1021/acsomega.1c01721
Anas, A., Sobhanan, J., Sulfiya, K. M., Jasmin, C., Sreelakshmi, P. K., & Biju, V. (2021). Advances in photodynamic antimicrobial chemotherapy. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 49, 100452.
doi: 10.1016/j.jphotochemrev.2021.100452
Wang, X., Luo, D., & Basilion, J. P. (2021). Photodynamic therapy: targeting cancer biomarkers for the treatment of cancers. Cancers (Basel), 13, 2992.
pubmed: 34203805
doi: 10.3390/cancers13122992
Zeina, B., Greenman, J., Corry, D., & Purcell, W. M. (2003). Antimicrobial photodynamic therapy: Assessment of genotoxic effects on keratinocytes in vitro. British Journal of Dermatology, 148, 229–232.
pubmed: 12588372
doi: 10.1046/j.1365-2133.2003.05091.x
Hampden-Martin, A., Fothergill, J., El Mohtadi, M., et al. (2021). Photodynamic antimicrobial chemotherapy coupled with the use of the photosensitizers methylene blue and temoporfin as a potential novel treatment for Staphylococcus aureus in burn infections. Access Microbiol, 3, 000273.
pubmed: 34816092
pmcid: 8604179
doi: 10.1099/acmi.0.000273
Bugaj, A. M. (2011). Targeted photodynamic therapy–a promising strategy of tumor treatment. Photochemical & Photobiological Sciences, 10, 1097–1109.
doi: 10.1039/c0pp00147c
Lu, R., Zhao, X., Li, J., et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395, 565–574.
doi: 10.1016/S0140-6736(20)30251-8
Li, W. H., Moore, M. J., Vasilieva, N., et al. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426, 450–454.
pubmed: 14647384
pmcid: 7095016
doi: 10.1038/nature02145
Jackson, C. B., Farzan, M., Chen, B., & Choe, H. (2022). Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology, 23, 3–20.
pubmed: 34611326
doi: 10.1038/s41580-021-00418-x
Park, Y. J., De Marco, A., Starr, T. N., et al. (2022). Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science, 375, 449–454.
pubmed: 34990214
pmcid: 9400459
doi: 10.1126/science.abm8143
Zhang, L., Dutta, S., Xiong, S., et al. (2022). Engineered ACE2 decoy mitigates lung injury and death induced by SARS-CoV-2 variants. Nature Chemical Biology, 18, 342–351.
pubmed: 35046611
pmcid: 8885411
doi: 10.1038/s41589-021-00965-6
Hoffmann, M., Kleine-Weber, H., & Pohlmann, S. (2020). A multibasic cleavage site in the spike protein of SARS-CoV-2 Is essential for infection of human lung cells. Molecular Cell, 78(779–784), e775.
Hoffmann, M., Kleine-Weber, H., Schroeder, S., et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(271–280), e278.
Cai, Y., Zhang, J., Xiao, T., et al. (2020). Distinct conformational states of SARS-CoV-2 spike protein. Science, 369, 1586–1592.
pubmed: 32694201
doi: 10.1126/science.abd4251
Raybould, M. I. J., Kovaltsuk, A., Marks, C., & Deane, C. M. (2021). CoV-AbDab: The coronavirus antibody database. Bioinformatics, 37, 734–735.
pubmed: 32805021
doi: 10.1093/bioinformatics/btaa739
Liu, L., Iketani, S., Guo, Y., et al. (2021). Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature. https://doi.org/10.1038/d41586-021-03826-3
doi: 10.1038/d41586-021-03826-3
pubmed: 35016198
pmcid: 9763054
Hoffmann, M., Kruger, N., Schulz, S., et al. (2021). The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell, 185, 4470–5456.
Cao, Y., Wang, J., Jian, F., et al. (2021). Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 602, 657–663.
pubmed: 35016194
pmcid: 8866119
doi: 10.1038/s41586-021-04385-3
Yewdell, J. W. (2021). Antigenic drift: understanding COVID-19. Immunity, 54, 2681–2687.
pubmed: 34910934
pmcid: 8669911
doi: 10.1016/j.immuni.2021.11.016
Nabel, K. G., Clark, S. A., Shankar, S., et al. (2022). Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science, 375, eabl6251.
pubmed: 34855508
doi: 10.1126/science.abl6251
Harvey, W. T., Carabelli, A. M., Jackson, B., et al. (2021). SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology, 19, 409–424.
pubmed: 34075212
pmcid: 8167834
doi: 10.1038/s41579-021-00573-0
Kipshidze, N., Yeo, N., & Kipshidze, N. (2020). Photodynamic therapy for COVID-19. Nature Photonics, 14, 651–652.
doi: 10.1038/s41566-020-00703-9
Svyatchenko, V. A., Nikonov, S. D., Mayorov, A. P., Gelfond, M. L., & Loktev, V. B. (2021). Antiviral photodynamic therapy: inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and radachlorin. Photodiagnosis and Photodynamic Therapy, 33, 102112.
pubmed: 33249118
doi: 10.1016/j.pdpdt.2020.102112
Lobo, C. S., Rodrigues-Santos, P., Pereira, D., et al. (2022). Photodynamic disinfection of SARS-CoV-2 clinical samples using a methylene blue formulation. Photochemical & Photobiological Sciences, 21, 1101–1109.
doi: 10.1007/s43630-022-00202-6
Zupin, L., Fontana, F., Clemente, L., et al. (2022). Optimization of anti-SARS-CoV-2 treatments based on curcumin, used alone or employed as a photosensitizer. Viruses, 14, 2132.
pubmed: 36298687
pmcid: 9608677
doi: 10.3390/v14102132
Ziganshyna, S., Szczepankiewicz, G., Kuehnert, M., et al. (2022). Photodynamic inactivation of SARS-CoV-2 infectivity and antiviral treatment effects in vitro. Viruses, 14, 1301.
pubmed: 35746772
pmcid: 9229166
doi: 10.3390/v14061301
Pires, L., Wilson, B. C., Bremner, R., et al. (2022). Translational feasibility and efficacy of nasal photodynamic disinfection of SARS-CoV-2. Science and Reports, 12, 14438.
doi: 10.1038/s41598-022-18513-0
Duguay, B. A., Herod, A., Pringle, E. S., et al. (2022). Photodynamic inactivation of human coronaviruses. Viruses, 14, 110.
pubmed: 35062314
pmcid: 8779093
doi: 10.3390/v14010110
Crocker, L. B., Lee, J. H., Mital, S., et al. (2022). Tuning riboflavin derivatives for photodynamic inactivation of pathogens. Science and Reports, 12, 6580.
doi: 10.1038/s41598-022-10394-7
Yu, S., Sun, G., Sui, Y., et al. (2021). Potent inhibition of severe acute respiratory syndrome coronavirus 2 by photosensitizers compounds. Dyes and Pigments, 194, 109570.
pubmed: 34183871
pmcid: 8216852
doi: 10.1016/j.dyepig.2021.109570
Pinto, D., Park, Y. J., Beltramello, M., et al. (2020). Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 583, 290–295.
pubmed: 32422645
doi: 10.1038/s41586-020-2349-y
Schoof, M., Faust, B., Saunders, R. A., et al. (2020). An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science, 370, 1473–1479.
pubmed: 33154106
pmcid: 7857409
doi: 10.1126/science.abe3255
Li, D., Edwards, R. J., Manne, K., et al. (2021). In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 184(4203–4219), e4232.
Pymm, P., Adair, A., Chan, L. J., et al. (2021). Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice. Proceedings of the National Academy of Sciences USA. https://doi.org/10.1073/pnas.2101918118
doi: 10.1073/pnas.2101918118
Westberg, M., Etzerodt, M., & Ogilby, P. R. (2019). Rational design of genetically encoded singlet oxygen photosensitizing proteins. Current Opinion in Structural Biology, 57, 56–62.
pubmed: 30875586
doi: 10.1016/j.sbi.2019.01.025
Baier, J., Maisch, T., Maier, M., Engel, E., Landthaler, M., & Baumler, W. (2006). Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophysical Journal, 91, 1452–1459.
pubmed: 16751234
pmcid: 1518628
doi: 10.1529/biophysj.106.082388
Westberg, M., Holmegaard, L., Pimenta, F. M., Etzerodt, M., & Ogilby, P. R. (2015). Rational design of an efficient, genetically encodable, protein-encased singlet oxygen photosensitizer. Journal of the American Chemical Society, 137, 1632–1642.
pubmed: 25575190
doi: 10.1021/ja511940j
Westberg, M., Bregnhoj, M., Etzerodt, M., & Ogilby, P. R. (2017). No photon wasted: an efficient and selective singlet oxygen photosensitizing protein. The Journal of Physical Chemistry B, 121, 9366–9371.
pubmed: 28892628
doi: 10.1021/acs.jpcb.7b07831
Lok, S. M. (2021). An NTD supersite of attack. Cell Host & Microbe, 29, 744–746.
doi: 10.1016/j.chom.2021.04.010
Cerutti, G., Guo, Y., Zhou, T., et al. (2021). Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host & Microbe, 29(819–833), e817.
Niedre, M. J., Yu, C. S., Patterson, M. S., & Wilson, B. C. (2005). Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: Validation in normal mouse skin with topical amino-levulinic acid. British Journal of Cancer, 92, 298–304.
pubmed: 15655542
pmcid: 2361839
doi: 10.1038/sj.bjc.6602331
Michaeli, A., & Feitelson, J. (1994). Reactivity of singlet oxygen toward amino acids and peptides. Photochemistry and Photobiology, 59, 284–289.
pubmed: 8016206
doi: 10.1111/j.1751-1097.1994.tb05035.x
Bisby, R. H., Morgan, C. G., Hamblett, I., & Gorman, A. A. (1999). Quenching of singlet oxygen by Trolox C, ascorbate, and amino acids: Effects of pH and temperature. Journal of Physical Chemistry A, 103, 7454–7459.
doi: 10.1021/jp990838c
Rykaer, M., Svensson, B., Davies, M. J., & Hagglund, P. (2017). Unrestricted mass spectrometric data analysis for identification, localization, and quantification of oxidative protein modifications. Journal of Proteome Research, 16, 3978–3988.
pubmed: 28920440
doi: 10.1021/acs.jproteome.7b00330
Bachi, A., Dalle-Donne, I., & Scaloni, A. (2013). Redox proteomics: Chemical principles, methodological approaches and biological/biomedical promises. Chemical Reviews, 113, 596–698.
pubmed: 23181411
doi: 10.1021/cr300073p
Gobeil, S. M., Janowska, K., McDowell, S., et al. (2021). Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science, 373, 6555.
doi: 10.1126/science.abi6226
Tan, Z. W., Tee, W. V., Samsudin, F., Guarnera, E., Bond, P. J., & Berezovsky, I. N. (2022). Allosteric perspective on the mutability and druggability of the SARS-CoV-2 Spike protein. Structure, 588, 682.
Lu, Y., Wang, J., Li, Q., Hu, H., Lu, J., & Chen, Z. (2021). Advances in neutralization assays for SARS-CoV-2. Scandinavian Journal of Immunology, 94, e13088.
pmcid: 8236914
doi: 10.1111/sji.13088
Kim, M. M., & Darafsheh, A. (2020). Light sources and dosimetry techniques for photodynamic therapy. Photochemistry and Photobiology, 96, 280–294.
pubmed: 32003006
doi: 10.1111/php.13219
Sarkisyan, K. S., Zlobovskaya, O. A., Gorbachev, D. A., et al. (2015). KillerOrange, a genetically encoded photosensitizer activated by blue and green light. PLoS ONE, 10, e0145287.
pubmed: 26679300
pmcid: 4683004
doi: 10.1371/journal.pone.0145287
Riani, Y. D., Matsuda, T., & Nagai, T. (2021). Genetically encoded photosensitizer for destruction of protein or cell function. Advances in Experimental Medicine and Biology, 1293, 265–279.
pubmed: 33398819
doi: 10.1007/978-981-15-8763-4_16
Gautier, A., & Hinner, M. J. (2015). Site-specific protein labeling: methods and protocols. New York: Humana Press Springer.
doi: 10.1007/978-1-4939-2272-7
Falck, G., & Muller, K. M. (2018). Enzyme-based labeling strategies for antibody-drug conjugates and antibody mimetics. Antibodies (Basel), 7, 4.
pubmed: 31544857
doi: 10.3390/antib7010004
Mogensen, D. J., Etzerodt, M., & Ogilby, P. R. (2022). Photoinduced bleaching in an efficient singlet oxygen photosensitizing protein: Identifying a culprit in the flavin-binding LOV-based protein SOPP3. Journal of Photochemistry and Photobiology A: Chemistry, 429, 113894.
doi: 10.1016/j.jphotochem.2022.113894
Mogensen, D. J., Westberg, M., Breitenbach, T., Etzerodt, M., & Ogilby, P. R. (2021). Stable transfection of the singlet oxygen photosensitizing protein SOPP3: examining aspects of intracellular behavior. Photochemistry and Photobiology, 97, 1417–1430.
pubmed: 33934354
doi: 10.1111/php.13440
Li, Y., Wang, H., Tang, X., et al. (2020). SARS-CoV-2 and three related coronaviruses utilize multiple ACE2 orthologs and are potently blocked by an improved ACE2-Ig. Journal of Virology. https://doi.org/10.1128/JVI.01283-20
doi: 10.1128/JVI.01283-20
pubmed: 33361430
pmcid: 7944438
Jumper, J., Evans, R., Pritzel, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583–589.
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Sali, A., Potterton, L., Yuan, F., van Vlijmen, H., & Karplus, M. (1995). Evaluation of comparative protein modeling by MODELLER. Proteins, 23, 318–326.
pubmed: 8710825
doi: 10.1002/prot.340230306
Lindahl, E., Hess, B., & van der Spoel, D. (2001). GROMACS 3.0: a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7, 306–317.
doi: 10.1007/s008940100045