Cyclic electron flow around photosystem II in silico: How it works and functions in vivo.
Cyclic electron transfer
Light-to-chemical energy conversion
Oxygen evolution
Photosynthetic electron transport
Photosystem II
Water oxidation
Journal
Photosynthesis research
ISSN: 1573-5079
Titre abrégé: Photosynth Res
Pays: Netherlands
ID NLM: 100954728
Informations de publication
Date de publication:
Apr 2023
Apr 2023
Historique:
received:
02
07
2022
accepted:
29
12
2022
medline:
5
4
2023
pubmed:
9
2
2023
entrez:
8
2
2023
Statut:
ppublish
Résumé
To date, cyclic electron flow around PSI (PSI-CEF) has been considered the primary (if not the only) mechanism accepted to adjust the ratio of linear vs cyclic electron flow that is essential to adjust the ratio of ATP/NADPH production needed for CO
Identifiants
pubmed: 36753032
doi: 10.1007/s11120-023-00997-0
pii: 10.1007/s11120-023-00997-0
doi:
Substances chimiques
Photosystem II Protein Complex
0
NADP
53-59-8
Adenosine Triphosphate
8L70Q75FXE
Photosystem I Protein Complex
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
129-145Subventions
Organisme : Basic Energy Sciences
ID : DE-SC0019460
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Références
Ananyev G et al (2017) Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii. Biochimica et Biophysica Acta (BBA)- Bioenerget 1858(11):873–883
Ananyev G, Dismukes GC (2005) How fast can Photosystem II split water? Kinetic performance at high and low frequencies. Photosynth Res 84(1):355–365
pubmed: 16049797
doi: 10.1007/s11120-004-7081-1
Ananyev G, Gates C, Dismukes GC (2016a) The Oxygen quantum yield in diverse algae and cyanobacteria is controlled by partitioning of flux between linear and cyclic electron flow within photosystem II. Biochim Biophys Acta (BBA)-Bioenerget 1857(9):1380–1391
doi: 10.1016/j.bbabio.2016.04.056
Ananyev G, Gates C, Kaplan A, Dismukes GC (2016b) Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii. Biochim Biophys Acta 1858(11):873–883
doi: 10.1016/j.bbabio.2017.07.001
Belyaeva NE, Pashchenko VZ, Renger G, Riznichenko GY, Rubin AB (2006) Application of a photosystem II model for analysis of fluorescence induction curves in the 100 ns to 10 s time domain after excitation with a saturating light pulse. Biophysics 51(6):860–872
doi: 10.1134/S0006350906060030
Belyaeva NE, Bulychev AA, Riznichenko GY, Rubin AB (2011) A model of photosystem II for the analysis of fast fluorescence rise in plant leaves. Biophysics 56(3):464
doi: 10.1134/S0006350911030055
Belyaeva NE, Bulychev AA, Riznichenko GY, Rubin AB (2016) Thylakoid membrane model of the Chl a fluorescence transient and P700 induction kinetics in plant leaves. Photosynth Res 130(1):491–515
pubmed: 27368165
doi: 10.1007/s11120-016-0289-z
Belyaeva NE, Bulychev AA, Riznichenko GY, Rubin AB (2019) Analyzing both the fast and the slow phases of chlorophyll a fluorescence and P700 absorbance changes in dark-adapted and preilluminated pea leaves using a thylakoid membrane model. Photosynth Res 140(1):1–19
pubmed: 30810971
doi: 10.1007/s11120-019-00627-8
Brookes PC, Newcombe AD, Jenkinson DS (1987) Adenylate energy charge measurements in soil. Soil Biol Biochem 19(2):211–217
doi: 10.1016/0038-0717(87)90084-8
De Causmaecker S, Douglass Jeffrey S, Fantuzzi A, Nitschke W, Rutherford AW (2019) Energetics of the exchangeable quinone, QB, in Photosystem II. Proc Natl Acad Sci 116(39):19458–19463
pubmed: 31488720
pmcid: 6765312
doi: 10.1073/pnas.1910675116
Delosme R, Joliot P (2002) Period four oscillations in chlorophyll a fluorescence. Photosynth Res 73(1):165
pubmed: 16245118
doi: 10.1023/A:1020430610627
Dogutan DK, Nocera DG (2019) Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Acc Chem Res 52(11):3143–3148
pubmed: 31593438
doi: 10.1021/acs.accounts.9b00380
Falkowski PG, Fujita Y, Ley A, Mauzerall D (1986) Evidence for cyclic electron flow around Photosystem II in chlorella pyrenoidosa. Plant Physiol 81:310–312
pubmed: 16664797
pmcid: 1075326
doi: 10.1104/pp.81.1.310
Gates C, Ananyev G, Dismukes GC (2016) The strontium inorganic mutant of the water oxidizing center (CaMn4O5) of PSII improves WOC efficiency but slows electron flux through the terminal acceptors. Biochim Biophys Acta BBA Bioenerg 1857(9):1550–1560
doi: 10.1016/j.bbabio.2016.06.004
Gates C, Ananyev G, Dismukes GC (2020) Realtime kinetics of the light driven steps of photosynthetic water oxidation in living organisms by “stroboscopic” fluorometry. Biochim Biophys Acta BBA Bioenerg 1861(8):148212
doi: 10.1016/j.bbabio.2020.148212
Gates C, Ananyev G, Roy-Chowdhury S, Fromme P, Dismukes GC (2022a) Regulation of light energy conversion between linear and cyclic electron flow within photosystem II controlled by the plastoquinone/quinol redox poise. Photosynth Res. https://doi.org/10.1007/s11120-022-00985-w
doi: 10.1007/s11120-022-00985-w
pubmed: 36436152
Gates, C. G., G. Ananyev, S. Roy-Chowdhury, F. Petra and G. C. Dismukes (2022b). "Regulation of light-to-redox energy conversion within photosystem II at the QB and QC sites: traffic control of electron flux for photoprotection." Submitted.
Jablonsky J, Lazar D (2008) Evidence for intermediate S-states as initial phase in the process of oxygen-evolving complex oxidation. Biophys J 94(7):2725–2736
pubmed: 18178650
pmcid: 2267143
doi: 10.1529/biophysj.107.122861
Johnson GN, Rutherford AW, Krieger A (1995) A change in the midpoint potential of the quinone QA in Photosystem II associated with photoactivation of oxygen evolution. Biochim Biophys Acta BBA Bioenerg 1229(2):202–207
doi: 10.1016/0005-2728(95)00003-2
Kato Y, Noguchi T (2022) Redox properties and regulatory mechanism of the iron-quinone electron acceptor in photosystem II as revealed by FTIR spectroelectrochemistry. Photosynth Res. https://doi.org/10.1007/s11120-021-00894-4
doi: 10.1007/s11120-021-00894-4
pubmed: 34985636
Kolber ZS, Prášil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta BBA Bioenerg 1367(1):88–106
doi: 10.1016/S0005-2728(98)00135-2
Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155(1):70–78
pubmed: 21078862
doi: 10.1104/pp.110.166652
Laisk A, Oja V (2018) Kinetics of photosystem II electron transport: a mathematical analysis based on chlorophyll fluorescence induction. Photosynth Res 136(1):63–82
pubmed: 28936722
doi: 10.1007/s11120-017-0439-y
Laisk A, Eichelmann H, Oja V (2015) Oxidation of plastohydroquinone by photosystem II and by dioxygen in leaves. Biochim Biophys Acta BBA Bioenerg 1847(6):565–575
doi: 10.1016/j.bbabio.2015.03.003
Lavaud J, van Gorkom HJ, Etienne A-L (2002) Photosystem II electron transfer cycle and chlororespiration in planktonic diatoms. Photosynth Res 74(1):51–59
pubmed: 16228544
doi: 10.1023/A:1020890625141
Lawlor DW (2002) Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot 53(370):773–787
pubmed: 11912221
doi: 10.1093/jexbot/53.370.773
LazÁR D (2003) Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of Photosystem II and considering Photosystem II heterogeneity. J Theor Biol 220(4):469–503
pubmed: 12623282
doi: 10.1006/jtbi.2003.3140
Lea-Smith DJ, Bombelli P, Vasudevan R, Howe CJ (2016) Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim Biophys Acta BBA Bioenerg 1857(3):247–255
doi: 10.1016/j.bbabio.2015.10.007
Magnuson A, Rova M, Mamedov F, Fredriksson P-O, Styring S (1999) The role of cytochrome b559 and tyrosineD in protection against photoinhibition during in vivo photoactivation of Photosystem II. Biochim Biophys Acta BBA Bioenerg 1411(1):180–191
doi: 10.1016/S0005-2728(99)00044-4
Mani K, Zournas A, Dismukes GC (2021) Bridging the gap between Kok-type and kinetic models of photosynthetic electron transport within Photosystem II. Photosynth Res. https://doi.org/10.1007/s11120-021-00868-6
doi: 10.1007/s11120-021-00868-6
pubmed: 34402027
Miyake C, Okamura M (2003) Cyclic electron flow within PSII protects PSII from its photoinhibition in thylakoid membranes from spinach chloroplasts. Plant Cell Physiol 44(4):457–462
pubmed: 12721388
doi: 10.1093/pcp/pcg053
Miyake C, Yonekura K, Kobayashi Y, Yokota A (2002) Cyclic electron flow within PSII functions in intact chloroplasts from spinach leaves. Plant Cell Physiol 43(8):951–957
pubmed: 12198198
doi: 10.1093/pcp/pcf113
Morales A, Yin X, Harbinson J, Driever SM, Molenaar J, Kramer DM, Struik PC (2018) In silico analysis of the regulation of the photosynthetic electron transport chain in C3 plants. Plant Physiol 176(2):1247–1261
pubmed: 28924017
doi: 10.1104/pp.17.00779
Murata N, Nishiyama Y (2018) ATP is a driving force in the repair of photosystem II during photoinhibition. Plant Cell Environ 41(2):285–299
pubmed: 29210214
doi: 10.1111/pce.13108
Nawrocki WJ, Bailleul B, Picot D, Cardol P, Rappaport F, Wollman FA, Joliot P (2019) The mechanism of cyclic electron flow. Biochim Biophys Acta BBA Bioenerg 1860(5):433–438
doi: 10.1016/j.bbabio.2018.12.005
Onno Feikema W, Marosvölgyi MA, Lavaud J, van Gorkom HJ (2006) Cyclic electron transfer in photosystem II in the marine diatom Phaeodactylum tricornutum. Biochim Biophys Acta BBA Bioenerg 1757(7):829–834
doi: 10.1016/j.bbabio.2006.06.003
Packham NK, Hodges M, Etienne AL, Briantais JM (1988) Changes in the flash-induced oxygen yield pattern by thylakoid membrane phosphorylation. Photosynth Res 15(3):221–232
pubmed: 24430924
doi: 10.1007/BF00047354
Prasil O, Kolber Z, Berry JA, Falkowski PG (1996) Cyclic electron flow around Photosystem II in vivo. Photosynth Res 48(3):395–410
pubmed: 24271480
doi: 10.1007/BF00029472
Rutherford AW, Osyczka A, Rappaport F (2012) Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O2. FEBS Lett 586(5):603–616
pubmed: 22251618
doi: 10.1016/j.febslet.2011.12.039
Shikanai T, Yamamoto H (2017) Contribution of cyclic and pseudo-cyclic electron transport to the formation of proton motive force in chloroplasts. Mol Plant 10(1):20–29
pubmed: 27575692
doi: 10.1016/j.molp.2016.08.004
Shinkarev VP (1996) Binary oscillations in the Kok model of oxygen evolution in oxygenic photosynthesis. Photosynth Res 48(3):411–417
pubmed: 24271481
doi: 10.1007/BF00029473
Suslichenko IS, Tikhonov AN (2019) Photo-reducible plastoquinone pools in chloroplasts of Tradescentia plants acclimated to high and low light. FEBS Lett 593(8):788–798
pubmed: 30896038
doi: 10.1002/1873-3468.13366
Szilárd A, Sass L, Hideg É, Vass I (2005) Photoinactivation of Photosystem II by flashing light. Photosynth Res 84(1):15–20
pubmed: 16049749
doi: 10.1007/s11120-004-7161-2
Takagi D, Ifuku K, Nishimura T, Miyake C (2019) Antimycin A inhibits cytochrome b559-mediated cyclic electron flow within photosystem II. Photosynth Res 139(1):487–498
pubmed: 29790043
doi: 10.1007/s11120-018-0519-7
Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401(6756):914–917
doi: 10.1038/44842
Treves H, Raanan H, Finkel OM, Berkowicz SM, Keren N, Shotland Y, Kaplan A (2013) A newly isolated Chlorella sp. from desert sand crusts exhibits a unique resistance to excess light intensity. FEMS Microbiol Ecol 86(3):373–380
pubmed: 23773145
doi: 10.1111/1574-6941.12162
Vinyard DJ, Zachary CE, Ananyev G, Dismukes GC (2013) Thermodynamically accurate modeling of the catalytic cycle of photosynthetic oxygen evolution: a mathematical solution to asymmetric Markov chains. BBA-Bioenergetics 1827(7):861–868
pubmed: 23643726
doi: 10.1016/j.bbabio.2013.04.008
Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around Photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 67:81–106
pubmed: 26927905
doi: 10.1146/annurev-arplant-043015-112002
Zhao W, Zhang Q, Tan Y, Liu Z, Ma M, Wang M, Luo C (2021) Photoprotective roles of ascorbate and PSII cyclic electron flow in the response of the seagrass Zostera marina to oxygen-evolving complex photoinactivation. Photosynthetica 59(4):600–605
doi: 10.32615/ps.2021.051