Luminescent Lanthanide Complexes for Effective Oxygen-Sensing and Singlet Oxygen Generation.
lanthanide
luminescence
oxygen sensors
singlet oxygen
triplet states
Journal
ChemPlusChem
ISSN: 2192-6506
Titre abrégé: Chempluschem
Pays: Germany
ID NLM: 101580948
Informations de publication
Date de publication:
Jun 2023
Jun 2023
Historique:
revised:
25
01
2023
received:
11
12
2022
medline:
10
2
2023
pubmed:
10
2
2023
entrez:
9
2
2023
Statut:
ppublish
Résumé
Oxygen quantification using luminescence has attracted considerable attention in various fields, including environmental monitoring and clinical analysis. Among the reported luminophores, trivalent lanthanide complexes have displayed characteristic narrow emission bands with high brightness. This bright emission is based on photo-sensitized energy transfer via organic triplet states. The organic triplet states in lanthanide complexes effectively react with the triplet oxygen, enabling oxygen quantification by lanthanide luminescence. Some Tb
Identifiants
pubmed: 36756816
doi: 10.1002/cplu.202200445
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202200445Subventions
Organisme : Institute for Chemical Reaction Design and Discovery (ICReDD)
ID : JP20H02748
Organisme : Institute for Chemical Reaction Design and Discovery (ICReDD)
ID : JP20H04653
Organisme : Institute for Chemical Reaction Design and Discovery (ICReDD)
ID : JP20H05197
Organisme : Institute for Chemical Reaction Design and Discovery (ICReDD)
ID : JP20K21201
Organisme : Institute for Chemical Reaction Design and Discovery (ICReDD)
ID : JP21K18969
Organisme : Institute for Chemical Reaction Design and Discovery (ICReDD)
ID : JP22K14741
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
X.-D. Wang, O. S. Wolfbeis, Chem. Soc. Rev. 2014, 43, 3666-3761;
M. Schäferling, Angew. Chem. Int. Ed. 2012, 51, 3532-3554;
Angew. Chem. 2012, 124, 3590-3614;
H.-Y. Li, S.-N. Zhao, S.-Q. Zang, J. Li, Chem. Soc. Rev. 2020, 49, 6364-6401;
D. J. Wales, J. Grand, V. P. Ting, R. D. Burke, K. J. Edler, C. R. Bowen, S. Mintova, A. D. Burrows, Chem. Soc. Rev. 2015, 44, 4290-4321.
D. Parker, J. D. Fradgley, K.-L. Wong, Chem. Soc. Rev. 2021, 50, 8193-8213;
K. Iman, M. Shahid, New J. Chem. 2019, 43, 1094-1116;
D. Parker, Coord. Chem. Rev. 2000, 205, 109-130;
Y. Kitagawa, M. Tsurui, Y. Hasegawa, RSC Adv. 2022, 12, 810-821;
D. Mouchel Dit Leguerrier, R. Barré, J. K. Molloy, F. Thomas, Coord. Chem. Rev. 2021, 446, 214133.
J.-C. G. Bünzli, Coord. Chem. Rev. 2015, 293-294, 19-47;
K. Binnemans, Coord. Chem. Rev. 2015, 295, 1-45;
J.-C. G. Bünzli, Chem. Rev. 2010, 110, 2729-2755;
H. Xu, Q. Sun, Z. An, Y. Wei, X. Liu, Coord. Chem. Rev. 2015, 293-294, 228-249;
K. Nehra, A. Dalal, A. Hooda, S. Bhagwan, R. K. Saini, B. Mari, S. Kumar, D. Singh, J. Mol. Struct. 2022, 1249, 131531;
Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2012, 112, 1126-1162.
K. Yanagisawa, Y. Kitagawa, T. Nakanishi, T. Akama, M. Kobayashi, T. Seki, K. Fushimi, H. Ito, T. Taketsugu, Y. Hasegawa, Eur. J. Inorg. Chem. 2015, 2015, 4769-4774.
X. Zhao, J. Liu, J. Fan, H. Chao, X. Peng, Chem. Soc. Rev. 2021, 50, 4185-4219;
V.-N. Nguyen, Y. Yan, J. Zhao, J. Yoon, Acc. Chem. Res. 2021, 54, 207-220;
T. C. Pham, V.-N. Nguyen, Y. Choi, S. Lee, J. Yoon, Chem. Rev. 2021, 121, 13454-13619;
M. C. DeRosa, R. J. Crutchley, Coord. Chem. Rev. 2002, 233-234, 351-371;
U. Chilakamarthi, L. Giribabu, Chem. Rec. 2017, 17, 775-802;
G. Lan, K. Ni, W. Lin, Coord. Chem. Rev. 2019, 379, 65-81;
K. Ishii, Coord. Chem. Rev. 2012, 256, 1556-1568;
G.-Q. Jin, C. V. Chau, J. F. Arambula, S. Gao, J. L. Sessler, J.-L. Zhang, Chem. Soc. Rev. 2022, 51, 6177-6209.
N. E. Borisova, A. A. Kostin, E. A. Eroshkina, M. D. Reshetova, K. A. Lyssenko, E. N. Spodine, L. N. Puntus, Eur. J. Inorg. Chem. 2014, 2014, 2219-2229;
Y. Kitagawa, F. Suzue, T. Nakanishi, K. Fushimi, Y. Hasegawa, Dalton Trans. 2018, 47, 7327-7332;
Y. Kitagawa, M. Kumagai, P. P. Ferreira da Rosa, K. Fushimi, Y. Hasegawa, Chem. Eur. J. 2021, 27, 264-269;
L. D. Carlos, C. de Mello Donegá, R. Q. Albuquerque, S. Alves Jr., J. F. S. Menezes, O. L. Malta, Mol. Phys. 2003, 101, 1037-1045;
N. B. D. Lima, S. M. C. Gonçalves, S. A. Júnior, A. M. Simas, Sci. Rep. 2013, 3, 2395.
Y. Kitagawa, R. Moriake, T. Akama, K. Saito, K. Aikawa, S. Shoji, K. Fushimi, M. Kobayashi, T. Taketsugu, Y. Hasegawa, ChemPlusChem 2022, 87, e202200151;
S. F. H. Correia, R. L. Fernandes, L. Fu, M. M. Nolasco, L. D. Carlos, R. A. S. Ferreira, Eur. J. Inorg. Chem. 2020, 2020, 1736-1742;
B.-L. Chen, Y.-M. Sun, H. Xiang, M.-X. Lin, J.-H. Li, Y.-L. Huang, New J. Chem. 2022, 46, 11021-11024;
T. Xia, T. Song, G. Zhang, Y. Cui, Y. Yang, Z. Wang, G. Qian, Chem. Eur. J. 2016, 22, 18429-18434;
L. E. D. Aquino, G. A. Barbosa, J. D. Ramos, S. O. K. Giese, F. S. Santana, D. L. Hughes, G. G. Nunes, L. S. Fu, M. Fang, G. Poneti, A. N. C. Neto, R. T. Moura, R. A. S. Ferreira, L. D. Carlos, A. G. Macedo, J. F. Soares, Inorg. Chem. 2021, 60, 892-907.
J.-Y. Hu, Y. Ning, Y.-S. Meng, J. Zhang, Z.-Y. Wu, S. Gao, J.-L. Zhang, Chem. Sci. 2017, 8, 2702-2709;
G.-Q. Jin, Y. Ning, J.-X. Geng, Z.-F. Jiang, Y. Wang, J.-L. Zhang, Inorg. Chem. Front. 2020, 7, 289-299.
K.-L. Wong, J.-C. G. Bünzli, P. A. Tanner, J. Lumin. 2020, 224, 117256.
M. Hatanaka, S. Yabushita, J. Phys. Chem. A 2009, 113, 12615-12625;
P. A. Tanner, Chem. Soc. Rev. 2013, 42, 5090-5101.
D. E. Henrie, Coord. Chem. Rev. 1976, 18, 199-224.
K. Yanagisawa, Y. Kitagawa, T. Nakanishi, T. Akama, M. Kobayashi, T. Seki, K. Fushimi, H. Ito, T. Taketsugu, Y. Hasegawa, Eur. J. Inorg. Chem. 2017, 2017, 3843-3848;
N. M. Shavaleev, S. V. Eliseeva, R. Scopelliti, J.-C. G. Bünzli, Inorg. Chem. 2015, 54, 9166-9173;
J. D. Axe Jr, J. Chem. Phys. 1963, 39, 1154-1160;
N. B. D. Lima, J. D. L. Dutra, S. M. C. Gonçalves, R. O. Freire, A. M. Simas, Sci. Rep. 2016, 6, 21204;
M. H. V. Werts, R. T. F. Jukes, J. W. Verhoeven, Phys. Chem. Chem. Phys. 2002, 4, 1542-1548.
P. Dorenbos, J. Lumin. 2000, 91, 91-106.
Y. Kitagawa, P. P. Ferreira da Rosa, Y. Hasegawa, Dalton Trans. 2021, 50, 14978-14984;
P. P. Ferreira da Rosa, S. Miyazaki, H. Sakamoto, Y. Kitagawa, K. Miyata, T. Akama, M. Kobayashi, K. Fushimi, K. Onda, T. Taketsugu, Y. Hasegawa, J. Phys. Chem. A 2021, 125, 209-217;
Y. Kitagawa, M. Kumagai, K. Fushimi, Y. Hasegawa, Inorg. Chem. 2020, 59, 5865-5871;
W. M. Faustino, O. L. Malta, E. E. S. Teotonio, H. F. Brito, A. M. Simas, G. F. De Sa, J. Phys. Chem. A 2006, 110, 2510-2516;
C. K. Jørgensen, Mol. Phys. 1962, 5, 271-277;
G. D. R. Napier, R. J. D. Neilson, T. M. Shepherd, Chem. Phys. Lett. 1975, 31, 328-330.
C. Doffek, M. Seitz, Angew. Chem. Int. Ed. 2015, 54, 9719-9721;
Angew. Chem. 2015, 127, 9856-9858;
A. Masuya-Suzuki, S. Goto, T. Kambe, R. Karashimada, Y. Kubota, N. Iki, ChemistryOpen 2021, 10, 46-55;
N. M. Shavaleev, R. Scopelliti, F. Gumy, J.-C. G. Bünzli, Inorg. Chem. 2009, 48, 7937-7946.
Y. Hasegawa, K. Murakoshi, Y. Wada, S. Yanagida, J.-H. Kim, N. Nakashima, T. Yamanaka, Chem. Phys. Lett. 1996, 248, 8-12.
A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. Gareth Williams, M. Woods, J. Chem. Soc.-Perkin Trans. 1999, 2, 493-504.
Y. Hasegawa, M. Yamamuro, Y. Wada, N. Kanehisa, Y. Kai, S. Yanagida, J. Phys. Chem. A 2003, 107, 1697-1702;
T. Koizuka, M. Yamamoto, Y. Kitagawa, T. Nakanishi, K. Fushimi, Y. Hasegawa, Bull. Chem. Soc. Jpn. 2017, 90, 1287-1292.
M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodríguez-Ubis, J. Kankare, J. Lumin. 1997, 75, 149-169.
C. Yang, L.-M. Fu, Y. Wang, J.-P. Zhang, W.-T. Wong, X.-C. Ai, Y.-F. Qiao, B.-S. Zou, L.-L. Gui, Angew. Chem. Int. Ed. 2004, 43, 5010-5013;
Angew. Chem. 2004, 116, 5120-5123;
E. Kasprzycka, V. A. Trush, V. M. Amirkhanov, L. Jerzykiewicz, O. L. Malta, J. Legendziewicz, P. Gawryszewska, Chem. Eur. J. 2017, 23, 1318-1330;
S. Miyazaki, K. Miyata, H. Sakamoto, F. Suzue, Y. Kitagawa, Y. Hasegawa, K. Onda, J. Phys. Chem. A 2020, 124, 6601-6606.
O. L. Malta, J. Non-Cryst. Solids 2018, 354, 4770-4776.
S. Sato, M. Wada, Bull. Chem. Soc. Jpn. 1970, 43, 1955-1962;
N. M. Shavaleev, S. V. Eliseeva, R. Scopelliti, J.-C. G. Bünzli, Inorg. Chem. 2010, 49, 3927-3936;
N. M. Shavaleev, S. V. Eliseeva, R. Scopelliti, J.-C. G. Bünzli, Chem. Eur. J. 2009, 15, 10790-10802.
N. Sabbatini, M. Guardigli, I. Manet, F. Bolletta, R. Ziessel, Inorg. Chem. 1994, 33, 955-959.
A. Beeby, D. Parker, J. A. G. Williams, J. Chem. Soc.-Perkin Trans. 1996, 2, 1565-1579;
S. Blair, R. Kataky, D. Parker, New J. Chem. 2002, 26, 530-535;
G.-L. Law, R. Pal, L. O. Palsson, D. Parker, K.-L. Wong, Chem. Commun. 2009, 7321-7323;
J. Lehr, M. Tropiano, P. D. Beer, S. Faulkner, J. J. Davis, Chem. Commun. 2015, 51, 15944-15947;
T. J. Sørensen, A. M. Kenwright, S. Faulkner, Chem. Sci. 2015, 6, 2054-2059.
Y. Kitagawa, F. Suzue, T. Nakanishi, K. Fushimi, T. Seki, H. Ito, Y. Hasegawa, Commun. Chem. 2020, 3, 3.
V. A. Ilichev, A. V. Rozhkov, R. V. Rumyantcev, G. K. Fukin, I. D. Grishin, A. V. Dmitriev, D. A. Lypenko, E. I. Maltsev, A. N. Yablonskiy, B. A. Andreev, M. N. Bochkarev, Dalton Trans. 2017, 46, 3041-3050;
W. D. Horrocks Jr., P. J. Bolender, W. D. Smith, R. M. Supkowski, J. Am. Chem. Soc. 1997, 119, 5972-5973;
E. Kasprzycka, A. N. Carneiro Neto, V. A. Trush, O. L. Malta, L. Jerzykiewicz, V. M. Amirkhanov, J. Legendziewicz, P. Gawryszewska, Spectrochim. Acta A 2022, 274, 21072.
S. Tobita, M. Arakawa, I. Tanaka, J. Phys. Chem. 1985, 89, 5649-5654.
M. W. Mara, D. S. Tatum, A.-M. March, G. Doumy, E. G. Moore, K. N. Raymond, J. Am. Chem. Soc. 2019, 141, 11071-11081.
T. Yoshihara, Y. Hirakawa, M. Hosaka, M. Nangaku, S. Tobita, J. Photochem. Photobiol. C 2017, 30, 71-95;
A. Ruggi, F. W. B. van Leeuwen, A. H. Velders, Coord. Chem. Rev. 2011, 255, 2542-2554;
Y. Amao, Microchim. Acta 2003, 143, 1-12.
Y. Amao, I. Okura, T. Miyashita, Bull. Chem. Soc. Jpn. 2000, 73, 2663-2668;
Y. Amao, Y. Ishikawa, I. Okura, T. Miyashita, Bull. Chem. Soc. Jpn. 2001, 74, 2445-2449:;
R. D. L. Gaspar, J. H. S. K. Monteiro, I. M. Raimundo, I. O. Mazali, F. A. Sigoli, ChemPlusChem 2015, 80, 1721-1724;
H. Nakai, J. Seo, K. Kitagawa, T. Goto, K. Nonaka, T. Matsumoto, S. Ogo, Inorg. Chem. 2016, 55, 6609-6615;
H. Nakai, T. Goto, K. Kitagawa, K. Nonaka, T. Matsumoto, S. Ogo, Chem. Commun. 2014, 50, 15737-15739;
S. M. Borisov, R. Fischer, R. Saf, I. Klimant, Adv. Funct. Mater. 2014, 24, 6548-6560;
R. Van Deun, P. Nockemann, P. Fias, K. Van Hecke, L. Van Meervelt, K. Binnemans, Chem. Commun. 2005, 590-592;
Z. Dou, J. Yu, Y. Cui, Y. Yang, Z. Wang, D. Yang, G. Qian, J. Am. Chem. Soc. 2014, 136, 5527-5530;
Y. Wang, B. Li, L. Zhang, Q. Zuo, P. Li, J. Zhang, Z. Su, ChemPhysChem 2011, 12, 349-355;
C. Cui, L. Song, C. Li, T. Lin, K. Shi, Front. Chem. 2022, 9, 812461;
H. Nakai, J. Seo, K. Kitagawa, T. Goto, T. Matsumoto, S. Ogo, Dalton Trans. 2016, 45, 9492-9496;
A. Watkis, R. Hueting, T. J. Sørensen, M. Tropiano, S. Faulkner, Chem. Commun. 2015, 51, 15633-15636;
Z. Zhao, J. Ru, P. Zhou, Y. Wang, C. Shan, X. Yang, J. Cao, W. Liu, H. Guo, Y. Tang, Dalton Trans. 2019, 48, 16952-16960.
S. Blair, R. Kataky, D. Parker, New J. Chem. 2002, 26, 530-535;
Y. Hasegawa, T. Sawanobori, Y. Kitagawa, S. Shoji, K. Fushimi, Y. Nakasaka, T. Masuda, I. Hisaki, ChemPlusChem 2020, 85, 1989-1993;
S. Katagiri, Y. Hasegawa, Y. Wada, S. Yanagida, Chem. Lett. 2004, 33, 1438-1439.
B. Zelelow, G. E. Khalil, G. Phelan, B. Carlson, M. Gouterman, J. B. Callis, L. R. Dalton, Sens. Actuators B 2003, 96, 304-314;
G.-L. Law, R. Pal, L. O. Palsson, D. Parker, K.-L. Wong, Chem. Commun. 2009, 7321-7323;
M. Soulie, F. Latzko, E. Bourrier, V. Placide, S. J. Butler, R. Pal, J. W. Walton, P. L. Baldeck, B. Le Guennic, C. Andraud, J. M. Zwier, L. Lamarque, D. Parker, O. Maury, Chem. Eur. J. 2014, 20, 8636-8646;
T. J. Sørensen, A. M. Kenwright, S. Faulkner, Chem. Sci. 2015, 6, 2054-2059;
H. Nakai, M. Kuyama, J. Seo, T. Goto, T. Matsumoto, S. Ogo, Dalton Trans. 2017, 46, 9126-9130;
X.-Y. Xu, B. Yan, J. Mater. Chem. C 2016, 4, 8514-8521;
L. Zang, H. Zhao, RSC Adv. 2020, 10, 32938-32945.
N. Farajzadeh, G. Y. Atmaca, A. Erdoğmuş, M. B. Koçak, Dyes Pigm. 2021, 190, 109325;
T. Liu, H. Zhang, H. Zhao, Z. Zhang, Y. Tian, J. Lumin. 2020, 219, 116972;
R. Zugle, C. Litwinski, T. Nyokong, Polyhedron 2011, 30, 1612-1619;
P. Ung, M. Clerc, H. Huang, K. Qiu, H. Chao, M. Seitz, B. Boyd, B. Graham, G. Gasser, Inorg. Chem. 2017, 56, 7960-7974;
M. Özdemir, B. Köksoy, B. Yalçın, T. Taşkın, N. A. Selçuki, Ü. Salan, M. Durmuş, M. Bulut, Inorg. Chim. Acta. 2021, 517, 120145;
M. Galland, T. Le Bahers, A. Banyasz, N. Lascoux, A. Duperray, A. Grichine, R. Tripier, Y. Guyot, M. Maynadier, C. Nguyen, M. Gary-Bobo, C. Andraud, C. Monnereau, O. Maury, Chem. Eur. J. 2019, 25, 9026-9034;
M. Galland, F. Riobé, J. Ouyang, N. Saleh, F. Pointillart, V. Dorcet, B. Le Guennic, O. Cador, J. Crassous, C. Andraud, C. Monnereau, O. Maury, Eur. J. Inorg. Chem. 2019, 2019, 118-125;
K. R. Johnson, A. de Bettencourt-Dias, Inorg. Chem. 2019, 58, 13471-13480;
X. S. Ke, Y. Ning, J. Tang, J. Y. Hu, H. Y. Yin, G. X. Wang, Z. S. Yang, J. Jie, K. Liu, Z. S. Meng, Z. Zhang, H. Su, C. Shu, J. L. Zhang, Chem. Eur. J. 2016, 22, 9676-9686;
Q. Zhang, G. Cheng, H. Ke, X. Zhu, N. Zhu, W.-Y. Wong, W.-K. Wong, RSC Adv. 2015, 5, 22294-22299.
M. Pawlicki, H. A. Collins, R. G. Denning, H. L. Anderson, Angew. Chem. Int. Ed. 2009, 48, 3244-3266;
Angew. Chem. 2009, 121, 3292-3316;
P. T. C. So, Ch. Y. Dong, B. R. Masters, K. M. Berland, Annu. Rev. Biomed. Eng. 2000, 2, 399-429.
J. Jia, Y. Zhang, M. Zheng, C. Shan, H. Yan, W. Wu, X. Gao, B. Cheng, W. Liu, Y. Tang, Inorg. Chem. 2018, 57, 300-310;
T. Zhang, X. Zhu, C. C. W. Cheng, W.-M. Kwok, H.-L. Tam, J. Hao, D. W. J. Kwong, W.-K. Wong, K.-L. Wong, J. Am. Chem. Soc. 2011, 133, 20120-20122;
T. Zhang, C.-F. Chan, J. Hao, G.-L. Law, W.-K. Wong, K.-L. Wong, RSC Adv. 2013, 3, 382-385;
Y. Ning, Y.-W. Liu, Z. S. Yang, Y. Yao, L. Kang, J. L. Sessler, J.-L. Zhang, J. Am. Chem. Soc. 2020, 142, 6761-6768.
P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 2293-2352;
J. Luo, L.-F. Chen, P. Hu, Z.-N. Chen, Inorg. Chem. 2014, 53, 4184-4191;
C. Truillet, F. Lux, J. Moreau, M. Four, L. Sancey, S. Chevreux, G. Boeuf, P. Perriat, C. Frochot, R. Antoine, P. Dugourd, C. Portefaix, C. Hoeffel, M. Barberi-Heyob, C. Terryn, L. van Gulick, G. Lemercier, O. Tillement, Dalton Trans. 2013, 42, 12410-12420;
W. Chen, J. Zhao, M. Hou, M. Yang, C. Yi, Nanoscale 2021, 13, 16197-16206.
M. Zhu, H. Zhang, G. Ran, D. N. Mangel, Y. Yao, R. Zhang, J. Tan, W. Zhang, J. Song, J. L. Sessler, J.-L. Zhang, J. Am. Chem. Soc. 2021, 143, 7541-7552;
Y. Dai, B. Wang, Z. Sun, J. Cheng, H. Zhao, K. Wu, P. Sun, Q. Shen, M. Li, Q. Fan, ACS Appl. Mater. Interfaces 2019, 11, 39410-39423.
J. Ferguson, A. W. H. Mau, Mol. Phys. 1974, 28, 469-477;
T1 level of anthracene-9,10-endoperoxide is estimated to be 25,800 cm−1 using TD-DFT calculation (B3LYP/6-31G(D)).
T. H. Dinh, H. H. Nguyen, M. H. Nguyen, Inorg. Chem. Commun. 2020, 112, 107727;
H. Ma, X. Wang, B. Song, L. Wang, Z. Tang, T. Luo, J. Yuan, Dalton Trans. 2018, 47, 12852-12857;
J. Wu, Y. Xing, H. Wang, H. Liu, M. Yang, J. Yuan, New J. Chem. 2017, 41, 15187-15194.
J. I. Zink, Acc. Chem. Res. 1978, 11, 289-295;
C. R. Hurt, N. Mcavoy, S. Bjorklund, N. Filipescu, Nature 1966, 212, 179-180;
Y. Hasegawa, Y. Kitagawa, T. Nakanishi, NPG Asia Mater. 2018, 10, 52-70;
Y. Kitagawa, A. Naito, K. Fushimi, Y. Hasegawa, Chem. Eur. J. 2021, 27, 2279-2283;
Y. Kitagawa, A. Naito, K. Aikawa, K. Shima, S. Shoji, K. Fushimi, Y. Hasegawa, Chem. Eur. J. 2022, 28, e202200593.