Performance in (Ultra-)high-performance liquid chromatography-How to qualify and optimize instruments in practice.

extra column band broadening liquid chromatography superficially porous particles system optimization van Deemter curve

Journal

Journal of separation science
ISSN: 1615-9314
Titre abrégé: J Sep Sci
Pays: Germany
ID NLM: 101088554

Informations de publication

Date de publication:
Apr 2023
Historique:
revised: 11 01 2023
received: 31 10 2022
accepted: 03 02 2023
medline: 10 2 2023
pubmed: 10 2 2023
entrez: 9 2 2023
Statut: ppublish

Résumé

This paper investigates the suitability of an ultra-high-performance liquid chromatography/high-performance liquid chromatography hybrid system for ultra-high-performance liquid chromatography applications. Thus, the effect of extra column band broadening, the gradient system, and the injection system were tested and optimized according to their capabilities. An increase of the theoretical plate number up to a factor of two is achieved by the optimization of the extra column volume into the typical ultra-high-performance liquid chromatography range (<10 μl). Moreover, for qualitative purposes injections of volumes typical for ultra-high-performance liquid chromatography methods are precise. Despite this, a lack of precision and accuracy was determined for the gradient system, and the dwell volume meets the typical specification range for conventional HPLC systems. Therefore, hybrid systems are the intercept between both spectra and are limitedly suitable for ultra-high-performance liquid chromatography applications. Another way to approximate ultra-high-performance liquid chromatography performance using a high-performance liquid chromatography system is superficially porous particles. Thus, H/u curves of 5 μm superficially porous and 3 μm fully porous particles were recorded in order to determine the effect of the particle technology resulting in comparable performance of the used stationary phases.

Identifiants

pubmed: 36757818
doi: 10.1002/jssc.202200894
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2200894

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

Meyer VR. Practical high-performance liquid chromatography (English edition). 1st ed. Weinheim: WILEY; 2013.
Cheng C, Zhao S, Gu Y, Pang J, Zhao Y. Characterization and identification of the metabolites of dihydromethysticin by ultra-high-performance liquid chromatography orbitrap high-resolution mass spectrometry. J Sep Sci. 2022;45:2914-23.
Mallavarapu R, Katari NK, Siddhani VK, Marisetti VM, Rekulapally VK, Vyas G, Jonnalagadda SB. Development and validation of rapid ultra high performance liquid chromatography with tandem mass spectroscopic method for the quantification of N-nitrosodimethyl amine and N-nitrosodiethyl amine in sitagliptin and metformin hydrochloride immediate and extended-release formulations. J Sep Sci. 2022;45:3067-81.
Zhang X, Chen Y, Feng X, Li L, Song K, Sun Y, Zhang G, Zhang L. A comprehensive study of celastrol metabolism in vivo and in vitro using ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry. J Sep Sci. 2022;45:1222-39.
Ahluwalia V, Pandey N, Mishra BB, Kumar J. Isolation, optimized extraction, and ultra-high performance liquid chromatography with photodiode array method for quantitative analysis of chiratol in Swertia paniculate. J Sep Sci. 2021;44:3904-13.
Li Y, Cui Y, Li L, Lin X, Zhou X, Zhu H, Feng B. Ultra-high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry method for quantifying polymer poloxamer 124 and its application to pharmacokinetic study. J Sep Sci. 2021;44:3822-9.
Qu C, Wen J, Li P, Gao W, Yang H. Target profiling of flavonol glycosides in the extract of Ginkgo biloba leaf and their pharmacokinetics in rat plasma by ultra-high-performance liquid chromatography with tandem mass spectrometry. J Sep Sci. 2022;45:728-38.
Wang R, Cheng H, Yang Y, Ou J, Song Q, Zhou H, Peng H, Wang J, Fang CW. Ultra high performance liquid chromatography with quadrupole time.of.flight tandem mass spectrometry and liquid chromatrography with tandem mass spectrometry combined with chemometric analysis as an approach for the quality evaluation of Mume Fructus. J Sep Sci. 2022;45:1884-93.
Wei W, Liu S, Han Y, Lu S, Yan G, Sun H, Wang X. Rapid identification of chemical components in Zhizi Baipi decoction by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry coupled with a novel informatics UNIFI platform. J Sep Sci. 2022;45:3679-90.
Cao Y, Sun Z, Huang H, Lin A, Liu Y. Comparative analysis of absorbed ingredients and metabolites, and pharmacokinetic studies of Zhimu-Huangbai herb pair in the plasma of normal and type 2 diabetes mellitus rats by UHPLC-linear trap quadrupole-orbitrap MS and LC-MS/MS. J Sep Sci. 2022;45:664-76.
Hing L, Zhao Y, Yang C, Li G Wang H, Chen W, Cheng X, Liu L. Identification of chemical constituents in vitro and in vivo of Er Shen Zhenwu Decoction by utilizing ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. J Sep Sci. 2021;44:4327-42.
Huang L, Xu D, Chen Y, Fu R, Yue S, Yin J, Tang Y. Qualitative and quantitative analysis of chemical components in Eupatorium lindleyanum DC. by ultra-performance liquid chromatography-mass spectrometry integrated with anti-inflammatory activity research. J Sep Sci. 2021;44:3174-87.
Li T, Zhang M, Tan Z, Miao J, He Y, Zhang A, Ou M, Huang D, Wu F, Wang X. Rapid characterization of the constituents in Jigucao capsule using ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. J Sep Sci. 2022;45:677-96.
Wang Hu, Hu W, Wang Ho, Wang Y, Yang W. Comprehensive multicomponent characterization and fingerprinting analysis of Lanqin Oral Liquid by ultra-high-performance liquid chromatography coupled with ion mobility-quadrupole time-of-flight mass spectrometry. J Sep Sci. 2021;44:4111-22.
Fan S, Li B, Tian Y, Feng W, Niu L. Comprehensive characterization and identification of chemical constituents in Yangwei decoction using ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J Sep Sci. 2022;45:1006-19.
Fang L, Zhang J, Li F, Zhang Y, Zhang B, Huang S, Deng S Zhang H, Yu Z, Gao B, Wang C, Ma X. A strategy for the rapid discovery and validation of active diterpenoids as quality markers in different habitats of Langdu using ultrahigh-performance liquid chromatography-tandem mass spectrometry with multivariate statistical analysis. J Sep Sci. 2022;45:2118-27.
Feng Y, Hu J, Wang F, Li B, Qian Q, Wang X, Niu L. Quality evaluation of the classical prescription, Danggui Jianzhong decoction, using ultra-high-performance liquid chromatography fingerprint, chemical pattern recognition, and network pharmacology. J Sep Sci. 2022;45:3838-51.
Guan H, Li P, Wang Q, Zeng F, Wu J, Zhang F, Liao S, Shi Y. Deciphering the chemical constituents of Shengjiang Xiexin decoction by ultrahigh-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry and the impact of 20 characteristic components on multidrug resistance-associated protein 2 in the vesicular transport assay. J Sep Sci. 2022;45:3459-79.
Li R, Zhu Y, Ma M, Lei M, Zhao Y, Liu T, Yu M, Zhao Y, Yu Z. Characterization of chemical constituents in Shuanghuanglian oral dosage forms by ultra-high performance liquid chromatography coupled with time-of-flight mass spectrometry. J Sep Sci. 2022;45:1020-30.
Sun F, Wu X, Qi Y, Zhong Y, Zeng L, Wang K, Liang S. Combining ultra-high-performance liquid chromatography quadruple exactive orbitrap mass spectrometry with chemometrics to identify and verify the blood-activating components of hawthorn. J Sep Sci. 2022;45:2924-34.
Wang M, Li H, Gao Y, Li Y, Sun Y, Liu S, Liu Z. A multidimensional strategy to rapidly identify the chemical constituents in Shengxian Decoction by using ultra-performance liquid chromatography coupled with ion mobility spectrometry quadrupole time-of-flight mass spectrometry. J Sep Sci. 2022;45:3115-27.
Fekete S, Kohler I, Rudaz S, Guillarme D. Importance of instrumentation for fast liquid chromatography in pharmaceutical analysis. J Pharm Biomed. 2014;87:105-19.
Wu N, Clausen M. Fundamental and practical aspects of ultrahigh pressure liquid chromatography for fast separations. J Sep Sci. 2007;30:1167-82.
Wu N, Bradley AC, Welch CJ, Zhang L. Effect of extra-column volume on practical chromatographic parameters of sub-2-μm particle-packed columns in ultra-high pressure liquid chromatography. J Sep Sci. 2012;35:2018-25.
De Vos J, Broeckhoven K, Eeltink S. Advances in ultrahigh-pressure liquid chromatography technology and system design. Anal Chem. 2016;88:262-78.
Ahmed A, Skinley K, Herodotou S, Zhang H. Core-shell microspheres with porous nanostructured shells for liquid chromatography. J Sep Sci. 2018;41:99-124.
Philip J, Layne K, Layne J. Kinetex® 5 μm Core-Shell columns deliver significant improvements in chromatographic efficiency and resolution versus traditional fully porous 5 μm columns. TN-1133 Applications. Torrance, CA: Phenomenex Inc.; 2012.
Gumustas M, Zalewski P, Ozkan SA, Uslu B. The history of the core-shell particles and applications in active pharmaceutical ingredients via liquid chromatography. Chromatographia. 2019;82:17-48.
Phenomenex Inc. Chromotography product guide 21/22. Torrance, CA: Phenomenex, Inc.; 2021:235.
Tanaka N, McCalley DV. Core-shell, ultrasmall particles, monoliths, and other support materials in high-performance liquid chromatography. Anal Chem. 2016;88:279-98.
Hetzel T, Loeker D, Teutenberg T, Schmidt TC. Characterization of the efficiency of microbore liquid chromatography columns by van Deemter and kinetic plot analysis. J Sep Sci. 2016;39:3889-97.
Brice WR, Thang X, Colón LA. Fused-core, sub-2 μm packings, and monolithic HPLC columns: a comparative evaluation. J Sep Sci. 2009;32:2723-31.
Kromidas S. The HPLC expert: possibilities and limitations of modern high performance liquid chromatography. 1st ed. Weinheim: Wiley; 2016.
Brodacz W. Downsizing der LC-Phasenpartikel Das Großartige am Kleinen. LABO. Accessed: August 28. 2022 https://www.labo.de/chromatographie/das-grossartige-am-kleinen.htm
Fekete S, Fekete J. The impact of extra-column broadening on the chromatographic efficiency of 5 cm long narrow-bore very efficient columns. J Chromatogr A. 2011;1218:5286-91.
Kromidas S. The HPLC expert II: find and optimize the benefits of your HPLC /UHPLC. 1st ed. Weinheim: Wiley; 2017.
KNAUER Wissenschaftliche Geräte GmbH, Autosampler AS 6.1L instructions. Document no. V6821 version 2.3, KNAUER Wissenschaftliche Geräte GmbH, Berlin 2020.
KNAUER Wissenschaftliche Geräte GmbH, Detector DAD 6.1L/DAD 2.1L/MWD 2.1L instructions. Document no. V6700 version 4.6, KNAUER Wissenschaftliche Geräte GmbH, Berlin 2020.
KNAUER Wissenschaftliche Geräte GmbH, Valve unifier VU 4.1 instructions. Document no. V6855 version 1.4, KNAUER Wissenschaftliche Geräte GmbH, Berlin 2020.
KNAUER Wissenschaftliche Geräte GmbH, Pump P 6.1 L instructions. Document no. V6890 version 4.5, KNAUER Wissenschaftliche Geräte GmbH, Berlin 2020.
KNAUER Wissenschaftliche Geräte GmbH, Column thermostat CT 2.1 instructions. Document no. V6810 version 3.0, KNAUER Wissenschaftliche Geräte GmbH, Berlin 2020.
Phenomenex Inc. QC datasheet for qualitative testing of your column. Document FR44430112_3045. Torrance, CA: Phenomenex Inc.; 2012.
Lamotte S. Testing HPLC and UHPLC instruments: How to identify the right instrument for your application. Speech, the 42nd International Symposium on high performance liquid phase separations & related techniques (HPLC 2015), Genf, Schweiz.
Phenomenex Inc. HPLC column protection guide: Version 0113. Document GU54810113. Torrance, CA: Phenomenex Inc.; 2018.
Phenomenex Inc. Gemini HPLC/UHPLC columns tips for care and use. Document FL49380117_W. Torrance, CA: Phenomenex Inc.; 2017.
Phenomenex Inc. Luna H/UHPLC columns tips for care and use. Document FL44240718_W. Torrance, CA: Phenomenex Inc.; 2019.
Phenomenex Inc. Kinetex HPLC/UHPLC columns tips for care and use. Document FL49370519_W. Torrance, CA: Phenomenex Inc.; 2019.
Russo R, Guillarme D, Rudaz S, Bicchi C, Beuthey J. Evaluation of the coupling between ultra performance liquid chromatography and evaporative light scattering detector for selected phytochemical applications. J Sep Sci. 2008;31:2377-87
Röpke W. Der HPLC-Schrauber. 1st ed. Weinheim: Wiley; 2014.
Paul C, Steiner F, Dong M. HPLC autosamplers: perspectives, principles, and practices. LCGC North Am. 2019;37:514-29.
Gétaz D, Dogan N, Forrer N, Morbidelli M. Influence of the pore size of reversed phase materials on peptide purification processes. J Chromatogr A. 2011;1218:2912-22.
Accessed August 28, 2022. https://www.phenomenex.com/Products/HPLCDetail/luna

Auteurs

Alexander Jaekel (A)

Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach, Germany.

Michaela Wirtz (M)

Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach, Germany.

Stefan Lamotte (S)

Department of Analytical and Material Science, BASF SE, Ludwigshafen, Germany.

Mo Legelli (M)

Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach, Germany.

Classifications MeSH