Soft Tissue Aberration Correction for Histotripsy Using Acoustic Emissions From Cavitation Cloud Nucleation and Collapse.
Aberration correction
Cavitation emissions
Collapse
Histotripsy
Nucleation
Phase aberration
Soft tissue
Therapeutic ultrasound
Time reversal
Journal
Ultrasound in medicine & biology
ISSN: 1879-291X
Titre abrégé: Ultrasound Med Biol
Pays: England
ID NLM: 0410553
Informations de publication
Date de publication:
05 2023
05 2023
Historique:
received:
26
08
2022
revised:
01
12
2022
accepted:
03
01
2023
pmc-release:
01
05
2024
medline:
28
3
2023
pubmed:
10
2
2023
entrez:
9
2
2023
Statut:
ppublish
Résumé
Phase aberration from soft tissue limits the efficacy of histotripsy, a therapeutic ultrasound technique based on acoustic cavitation. Previous work has shown that the acoustic emissions from cavitation can serve as "point sources" for aberration correction (AC). This study compared the efficacy of soft tissue AC for histotripsy using acoustic cavitation emissions (ACE) from bubble cloud nucleation and collapse. A 750-kHz, receive-capable histotripsy array was pulsed to generate cavitation in ex vivo porcine liver through an intervening abdominal wall. Received ACE signals were used to determine the arrival time differences to the focus and compute corrective delays. Corrections from single pulses and from the median of multiple pulses were tested. On average, ACE AC obtained 96% ± 3% of the pressure amplitude obtained by hydrophone-based correction (compared with 71% ± 5% without AC). Both nucleation- and collapse-based corrections obtained >96% of the hydrophone-corrected pressure when using medians of ≥10 pulses. When using single-pulse corrections, nucleation obtained a range of 49%-99% of the hydrophone-corrected pressure, while collapse obtained 95%-99%. The results suggest that (i) ACE AC can recover nearly all pressure amplitude lost owing to soft tissue aberration and that (ii) the collapse signal permits robust AC using a small number of pulses.
Identifiants
pubmed: 36759271
pii: S0301-5629(23)00004-2
doi: 10.1016/j.ultrasmedbio.2023.01.004
pmc: PMC10082475
mid: NIHMS1863580
pii:
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1182-1193Subventions
Organisme : NCI NIH HHS
ID : R01 CA211217
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS108042
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB028309
Pays : United States
Organisme : NIBIB NIH HHS
ID : R01 EB031007
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK091267
Pays : United States
Informations de copyright
Copyright © 2023 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Conflict of interest J.R.S., Z.X. and T.L.H. and the University of Michigan have financial interests with HistoSonics.
Références
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Nov;65(11):2073-2085
pubmed: 30281443
Med Phys. 2012 Apr;39(4):1936-45
pubmed: 22482615
Ultrasound Med Biol. 2013 Mar;39(3):449-65
pubmed: 23380152
IEEE Trans Ultrason Ferroelectr Freq Control. 2002 Jun;49(6):726-38
pubmed: 12075966
J Acoust Soc Am. 2018 Sep;144(3):1160
pubmed: 30424663
Phys Med Biol. 2009 May 7;54(9):2597-613
pubmed: 19351986
Int J Hyperthermia. 2022;39(1):1115-1123
pubmed: 36002243
J Ther Ultrasound. 2016 Dec 8;4:30
pubmed: 27980784
Phys Med Biol. 2018 Mar 08;63(5):055013
pubmed: 29424711
IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(5):555-66
pubmed: 18267667
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Apr;68(4):1213-1223
pubmed: 33147143
Ultrasound Med Biol. 2017 Jun;43(6):1237-1251
pubmed: 28318889
Ultrasound Med Biol. 2019 May;45(5):1056-1080
pubmed: 30922619
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Oct;69(10):2766-2775
pubmed: 35617178
IEEE Trans Biomed Eng. 2010 Jan;57(1):134-44
pubmed: 19770084
J Ther Ultrasound. 2018 Jun 20;6:4
pubmed: 29951205
Phys Med Biol. 2022 Jul 19;67(15):
pubmed: 35772383
Ultrason Sonochem. 2019 May;53:164-177
pubmed: 30686603
Int J Hyperthermia. 2015 Mar;31(2):145-62
pubmed: 25707817
J Acoust Soc Am. 2011 Oct;130(4):1888-98
pubmed: 21973343
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Feb;61(2):251-65
pubmed: 24474132
IEEE Trans Biomed Eng. 2023 Feb;70(2):592-602
pubmed: 35984807
Phys Med Biol. 2017 Feb 21;62(4):1269-1290
pubmed: 27995900
J Acoust Soc Am. 1991 Dec;90(6):2924-30
pubmed: 1838560
J Urol. 2006 Feb;175(2):734-8
pubmed: 16407041
Phys Med Biol. 2022 Jun 10;67(12):
pubmed: 35609619
Ultrason Imaging. 1988 Jan;10(1):1-11
pubmed: 3291365
IEEE Trans Ultrason Ferroelectr Freq Control. 1988;35(6):758-67
pubmed: 18290213
Ultrasound Med Biol. 2019 Sep;45(9):2405-2416
pubmed: 31155405
IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(5):567-78
pubmed: 18267668
Ultrason Sonochem. 2021 Jan;70:105312
pubmed: 32866882
Ultrasound Med Biol. 2015 Jun;41(6):1651-67
pubmed: 25766571
Curr Opin Urol. 2014 Jan;24(1):104-10
pubmed: 24231530
Ultrasound Med Biol. 2013 Aug;39(8):1398-409
pubmed: 23683406
J Acoust Soc Am. 2007 Jul;122(1):229-36
pubmed: 17614482
J Acoust Soc Am. 2011 Nov;130(5):3498-510
pubmed: 22088025
Phys Med Biol. 2017 Apr 7;62(7):2559-2580
pubmed: 28165334
Cardiovasc Intervent Radiol. 2020 Nov;43(11):1695-1701
pubmed: 32676957
Phys Med Biol. 2005 Oct 21;50(20):4797-809
pubmed: 16204873
Ultrasound Med Biol. 2021 Aug;47(8):2310-2320
pubmed: 33985826
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Jun;51(6):726-36
pubmed: 15244286
J Acoust Soc Am. 2003 Jan;113(1):84-93
pubmed: 12558249
J Acoust Soc Am. 2020 Dec;148(6):3569
pubmed: 33379925
Phys Med Biol. 2014 Jun 21;59(12):3139-71
pubmed: 24861888
J Acoust Soc Am. 1998 Dec;104(6):3635-49
pubmed: 9857521
IEEE Trans Med Imaging. 2019 Jan;38(1):124-133
pubmed: 30028696
Med Phys. 2010 Jun;37(6):2533-40
pubmed: 20632565
IEEE Trans Biomed Eng. 2022 May;69(5):1663-1673
pubmed: 34752379
J Endourol. 2010 Jul;24(7):1145-50
pubmed: 20575696
IEEE Trans Med Imaging. 2022 Jun;41(6):1410-1419
pubmed: 34986094
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Oct;69(10):2955-2964
pubmed: 35981067
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Apr;68(4):1040-1050
pubmed: 33052845
IEEE Trans Biomed Eng. 2011 Jun;58(6):1621-8
pubmed: 21245005
Int J Hyperthermia. 2018 Sep;34(6):731-743
pubmed: 29278946
Ultrasound Med Biol. 2013 Oct;39(10):1785-93
pubmed: 23932273
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jun;67(6):1178-1191
pubmed: 31976885
Phys Med Biol. 2002 Apr 21;47(8):1219-36
pubmed: 12030552
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Dec;51(12):1639-48
pubmed: 15690724
Int J Hyperthermia. 2021;38(1):561-575
pubmed: 33827375
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 May;55(5):1122-32
pubmed: 18519220
Sci Rep. 2019 Dec 27;9(1):20176
pubmed: 31882870
Sci Rep. 2022 Aug 24;12(1):14462
pubmed: 36002564
Urology. 2008 Sep;72(3):682-6
pubmed: 18342918
J Acoust Soc Am. 1994 Aug;96(2 Pt 1):649-60
pubmed: 7930065
Ultrasonics. 2014 Dec;54(8):2151-8
pubmed: 25015000
Ultrasound Med Biol. 2009 Dec;35(12):1982-94
pubmed: 19854563
Cardiovasc Intervent Radiol. 2021 Oct;44(10):1643-1650
pubmed: 34244841
J Acoust Soc Am. 1997 May;101(5 Pt 1):2940-50
pubmed: 9165740
Ultrasound Med Biol. 2008 Mar;34(3):435-45
pubmed: 17935872