Noninvasive evaluation of PD-L1 expression in non-small cell lung cancer by immunoPET imaging using an acylating agent-modified antibody fragment.


Journal

European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988

Informations de publication

Date de publication:
05 2023
Historique:
received: 23 12 2022
accepted: 26 01 2023
medline: 24 4 2023
pubmed: 10 2 2023
entrez: 9 2 2023
Statut: ppublish

Résumé

The aim of this study was to explore an effective The prepared durva F(ab') After being modified with SHPP, the average conjugation number of SHPP per durva-F(ab') A PD-L1 PET imaging probe [

Identifiants

pubmed: 36759371
doi: 10.1007/s00259-023-06130-6
pii: 10.1007/s00259-023-06130-6
doi:

Substances chimiques

Iodine-124 0
Immunoglobulin Fab Fragments 0
B7-H1 Antigen 0
Radiopharmaceuticals 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1585-1596

Subventions

Organisme : National Natural Science Foundation of China
ID : 11875114
Organisme : National Natural Science Foundation of China
ID : 82172002
Organisme : National Natural Science Foundation of China
ID : 82272058
Organisme : Shanghai Municipal Science and Technology Committee of the Shanghai Outstanding Young Academic Leaders Plan
ID : 21XD1423500
Organisme : Zhongshan Hospital, Fudan university
ID : 2020ZSLC20

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Dermani FK, Samadi P, Rahmani G, Kohlan AK, Najafi R. PD-1/PD-L1 immune checkpoint: potential target for cancer therapy. J Cell Physiol. 2019;234:1313–25. https://doi.org/10.1002/jcp.27172 .
doi: 10.1002/jcp.27172 pubmed: 30191996
Su D, Tsai HI, Xu Z, Yan F, Wu Y, Xiao Y, et al. Exosomal PD-L1 functions as an immunosuppressant to promote wound healing. J Extracell Vesicles. 2019;9:1709262. https://doi.org/10.1080/20013078.2019.1709262 .
doi: 10.1080/20013078.2019.1709262 pubmed: 33133428 pmcid: 7580831
Wan W, Ao X, Chen Q, Yu Y, Ao L, Xing W, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N(6)-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer. 2022;21:60. https://doi.org/10.1186/s12943-021-01447-y .
doi: 10.1186/s12943-021-01447-y pubmed: 35197058 pmcid: 8864846
Moik F, Chan WE, Wiedemann S, Hoeller C, Tuchmann F, Aretin MB, et al. Incidence, risk factors, and outcomes of venous and arterial thromboembolism in immune checkpoint inhibitor therapy. Blood. 2021;137:1669–78. https://doi.org/10.1182/blood.2020007878 .
doi: 10.1182/blood.2020007878 pubmed: 33067632 pmcid: 8016631
Carlisle JW, Steuer CE, Owonikoko TK, Saba NF. An update on the immune landscape in lung and head and neck cancers. CA Cancer J Clin. 2020;70:505–17. https://doi.org/10.3322/caac.21630 .
doi: 10.3322/caac.21630 pubmed: 32841388
Wen M, Cao Y, Wu B, Xiao T, Cao R, Wang Q, et al. PD-L1 degradation is regulated by electrostatic membrane association of its cytoplasmic domain. Nat Commun. 2021;12:5106. https://doi.org/10.1038/s41467-021-25416-7 .
doi: 10.1038/s41467-021-25416-7 pubmed: 34429434 pmcid: 8384847
Neubert NJ, Schmittnaegel M, Bordry N, Nassiri S, Wald N, Martignier C, et al. T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci Transl Med. 2018;10. https://doi.org/10.1126/scitranslmed.aan3311 .
Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021;18:345–62. https://doi.org/10.1038/s41571-021-00473-5 .
doi: 10.1038/s41571-021-00473-5 pubmed: 33580222
Lu S, Stein JE, Rimm DL, Wang DW, Bell JM, Johnson DB, et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 2019;5:1195–204. https://doi.org/10.1001/jamaoncol.2019.1549 .
doi: 10.1001/jamaoncol.2019.1549 pubmed: 31318407 pmcid: 6646995
Niemeijer AN, Leung D, Huisman MC, Bahce I, Hoekstra OS, van Dongen G, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat Commun. 2018;9:4664. https://doi.org/10.1038/s41467-018-07131-y .
doi: 10.1038/s41467-018-07131-y pubmed: 30405135 pmcid: 6220188
Yan Y, Zheng L, Du Q, Cui X, Dong K, Guo Y, et al. Interferon regulatory factor 1 (IRF-1) downregulates checkpoint kinase 1 (CHK1) through miR-195 to upregulate apoptosis and PD-L1 expression in Hepatocellular carcinoma (HCC) cells. Br J Cancer. 2021;125:101–11. https://doi.org/10.1038/s41416-021-01337-6 .
doi: 10.1038/s41416-021-01337-6 pubmed: 33772151 pmcid: 8257880
Zhang W, Liu Y, Yan Z, Yang H, Sun W, Yao Y, et al. IL-6 promotes PD-L1 expression in monocytes and macrophages by decreasing protein tyrosine phosphatase receptor type O expression in human hepatocellular carcinoma. J Immunother Cancer. 2020;8. https://doi.org/10.1136/jitc-2019-000285 .
Siu LL, Even C, Mesia R, Remenar E, Daste A, Delord JP, et al. Safety and efficacy of durvalumab with or without tremelimumab in patients with PD-L1-low/negative recurrent or metastatic HNSCC: the phase 2 CONDOR randomized clinical trial. JAMA Oncol. 2019;5:195–203. https://doi.org/10.1001/jamaoncol.2018.4628 .
doi: 10.1001/jamaoncol.2018.4628 pubmed: 30383184
Schofield DJ, Percival-Alwyn J, Rytelewski M, Hood J, Rothstein R, Wetzel L, et al. Activity of murine surrogate antibodies for durvalumab and tremelimumab lacking effector function and the ability to deplete regulatory T cells in mouse models of cancer. MAbs. 2021;13:1857100. https://doi.org/10.1080/19420862.2020.1857100 .
doi: 10.1080/19420862.2020.1857100 pubmed: 33397194 pmcid: 7831362
Cheng Y, Shi D, Xu Z, Gao Z, Si Z, Zhao Y, et al.
doi: 10.1021/acs.molpharmaceut.2c00084 pubmed: 36458832 pmcid: 9346612
Tijink BM, Perk LR, Budde M, Stigter-van Walsum M, Visser GW, Kloet RW, et al.
doi: 10.1007/s00259-009-1096-y pubmed: 19259661 pmcid: 2709218
Shi D, Zhang Y, Xu Z, Si Z, Cheng Y, Cheng D, et al. Noninvasive evaluation of EGFR expression of digestive tumors using
doi: 10.1155/2022/3748315 pubmed: 35903247 pmcid: 9281432
England CG, Ehlerding EB, Hernandez R, Rekoske BT, Graves SA, Sun H, et al. Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled pembrolizumab. J Nucl Med. 2017;58:162–8. https://doi.org/10.2967/jnumed.116.177857 .
doi: 10.2967/jnumed.116.177857 pubmed: 27493273 pmcid: 5209640
Dong W, Wu X, Ma S, Wang Y, Nalin AP, Zhu Z, et al. The mechanism of anti-PD-L1 antibody efficacy against PD-L1-negative tumors identifies NK cells expressing PD-L1 as a cytolytic effector. Cancer Discov. 2019;9:1422–37. https://doi.org/10.1158/2159-8290.CD-18-1259 .
doi: 10.1158/2159-8290.CD-18-1259 pubmed: 31340937 pmcid: 7253691
Cyriac G, Gandhi L. Emerging biomarkers for immune checkpoint inhibition in lung cancer. Semin Cancer Biol. 2018;52:269–77. https://doi.org/10.1016/j.semcancer.2018.05.006 .
doi: 10.1016/j.semcancer.2018.05.006 pubmed: 29782924
Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 2020;10:1808–25. https://doi.org/10.1158/2159-8290.CD-20-0522 .
doi: 10.1158/2159-8290.CD-20-0522 pubmed: 33139244 pmcid: 7710563
Zettlitz KA, Tavare R, Knowles SM, Steward KK, Timmerman JM, Wu AM. ImmunoPET of malignant and normal B cells with
doi: 10.1158/1078-0432.CCR-17-0855 pubmed: 28928164 pmcid: 5880625
Oliveira MC, Correia JDG. Biomedical applications of radioiodinated peptides. Eur J Med Chem. 2019;179:56–77. https://doi.org/10.1016/j.ejmech.2019.06.014 .
doi: 10.1016/j.ejmech.2019.06.014 pubmed: 31238251
Sugiura G, Kuhn H, Sauter M, Haberkorn U, Mier W. Radiolabeling strategies for tumor-targeting proteinaceous drugs. Molecules. 2014;19:2135–65. https://doi.org/10.3390/molecules19022135 .
doi: 10.3390/molecules19022135 pubmed: 24552984 pmcid: 6271853
Vorobyeva A, Schulga A, Rinne SS, Gunther T, Orlova A, Deyev S, et al. Indirect radioiodination of DARPin G3 using N-succinimidyl-para-iodobenzoate improves the contrast of HER2 molecular imaging. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20123047 .
Tolmachev V, Mume E, Sjoberg S, Frejd FY, Orlova A. Influence of valency and labelling chemistry on in vivo targeting using radioiodinated HER2-binding affibody molecules. Eur J Nucl Med Mol Imaging. 2009;36:692–701. https://doi.org/10.1007/s00259-008-1003-y .
doi: 10.1007/s00259-008-1003-y pubmed: 19066886
Li H, Frankenfield AM, Houston R, Sekine S, Hao L. Thiol-cleavable biotin for chemical and enzymatic biotinylation and its application to mitochondrial TurboID proteomics. J Am Soc Mass Spectrom. 2021;32:2358–65. https://doi.org/10.1021/jasms.1c00079 .
doi: 10.1021/jasms.1c00079 pubmed: 33909971 pmcid: 8898397
Wang Y, Liu X, Hnatowich DJ. An improved synthesis of NHS-MAG3 for conjugation and radiolabeling of biomolecules with
doi: 10.1038/nprot.2007.144 pubmed: 17446896
Vorobyeva A, Ssmall es CA, Konovalova E, Guler R, Mitran B, Garousi J, et al. Comparison of tumortargeting properties of directly and indirectly radioiodinated designed ankyrin repeat protein (DARPin) G3 variants for molecular imaging of HER2. Int J Oncol 2019;54:1209–20.  https://doi.org/10.3892/ijo.2019.4712 .
Mitran B, Guler R, Roche FP, Lindstrom E, Selvaraju RK, Fleetwood F, et al. Radionuclide imaging of VEGFR2 in glioma vasculature using biparatopic affibody conjugate: proof-of-principle in a murine model. Theranostics. 2018;8:4462–76. https://doi.org/10.7150/thno.24395 .
doi: 10.7150/thno.24395 pubmed: 30214632 pmcid: 6134937

Auteurs

Yuan Cheng (Y)

Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.

Dai Shi (D)

Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.

Renjie Ye (R)

Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.

Wenhui Fu (W)

Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.

Pengcheng Ma (P)

Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.

Zhan Si (Z)

Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.

Zhan Xu (Z)

Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.

Lixin Li (L)

Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.

Qingyu Lin (Q)

Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China. lin.qingyu@zs-hospital.sh.cn.
Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China. lin.qingyu@zs-hospital.sh.cn.
Shanghai Institute of Medical Imaging, Shanghai, 200032, China. lin.qingyu@zs-hospital.sh.cn.

Dengfeng Cheng (D)

Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China. cheng.dengfeng@zs-hospital.sh.cn.
Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, China. cheng.dengfeng@zs-hospital.sh.cn.
Shanghai Institute of Medical Imaging, Shanghai, 200032, China. cheng.dengfeng@zs-hospital.sh.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH