Noninvasive evaluation of PD-L1 expression in non-small cell lung cancer by immunoPET imaging using an acylating agent-modified antibody fragment.
F(ab')2 fragment
I-124
PD-L1
PET imaging
SHPP
Journal
European journal of nuclear medicine and molecular imaging
ISSN: 1619-7089
Titre abrégé: Eur J Nucl Med Mol Imaging
Pays: Germany
ID NLM: 101140988
Informations de publication
Date de publication:
05 2023
05 2023
Historique:
received:
23
12
2022
accepted:
26
01
2023
medline:
24
4
2023
pubmed:
10
2
2023
entrez:
9
2
2023
Statut:
ppublish
Résumé
The aim of this study was to explore an effective The prepared durva F(ab') After being modified with SHPP, the average conjugation number of SHPP per durva-F(ab') A PD-L1 PET imaging probe [
Identifiants
pubmed: 36759371
doi: 10.1007/s00259-023-06130-6
pii: 10.1007/s00259-023-06130-6
doi:
Substances chimiques
Iodine-124
0
Immunoglobulin Fab Fragments
0
B7-H1 Antigen
0
Radiopharmaceuticals
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1585-1596Subventions
Organisme : National Natural Science Foundation of China
ID : 11875114
Organisme : National Natural Science Foundation of China
ID : 82172002
Organisme : National Natural Science Foundation of China
ID : 82272058
Organisme : Shanghai Municipal Science and Technology Committee of the Shanghai Outstanding Young Academic Leaders Plan
ID : 21XD1423500
Organisme : Zhongshan Hospital, Fudan university
ID : 2020ZSLC20
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Dermani FK, Samadi P, Rahmani G, Kohlan AK, Najafi R. PD-1/PD-L1 immune checkpoint: potential target for cancer therapy. J Cell Physiol. 2019;234:1313–25. https://doi.org/10.1002/jcp.27172 .
doi: 10.1002/jcp.27172
pubmed: 30191996
Su D, Tsai HI, Xu Z, Yan F, Wu Y, Xiao Y, et al. Exosomal PD-L1 functions as an immunosuppressant to promote wound healing. J Extracell Vesicles. 2019;9:1709262. https://doi.org/10.1080/20013078.2019.1709262 .
doi: 10.1080/20013078.2019.1709262
pubmed: 33133428
pmcid: 7580831
Wan W, Ao X, Chen Q, Yu Y, Ao L, Xing W, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N(6)-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer. 2022;21:60. https://doi.org/10.1186/s12943-021-01447-y .
doi: 10.1186/s12943-021-01447-y
pubmed: 35197058
pmcid: 8864846
Moik F, Chan WE, Wiedemann S, Hoeller C, Tuchmann F, Aretin MB, et al. Incidence, risk factors, and outcomes of venous and arterial thromboembolism in immune checkpoint inhibitor therapy. Blood. 2021;137:1669–78. https://doi.org/10.1182/blood.2020007878 .
doi: 10.1182/blood.2020007878
pubmed: 33067632
pmcid: 8016631
Carlisle JW, Steuer CE, Owonikoko TK, Saba NF. An update on the immune landscape in lung and head and neck cancers. CA Cancer J Clin. 2020;70:505–17. https://doi.org/10.3322/caac.21630 .
doi: 10.3322/caac.21630
pubmed: 32841388
Wen M, Cao Y, Wu B, Xiao T, Cao R, Wang Q, et al. PD-L1 degradation is regulated by electrostatic membrane association of its cytoplasmic domain. Nat Commun. 2021;12:5106. https://doi.org/10.1038/s41467-021-25416-7 .
doi: 10.1038/s41467-021-25416-7
pubmed: 34429434
pmcid: 8384847
Neubert NJ, Schmittnaegel M, Bordry N, Nassiri S, Wald N, Martignier C, et al. T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci Transl Med. 2018;10. https://doi.org/10.1126/scitranslmed.aan3311 .
Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021;18:345–62. https://doi.org/10.1038/s41571-021-00473-5 .
doi: 10.1038/s41571-021-00473-5
pubmed: 33580222
Lu S, Stein JE, Rimm DL, Wang DW, Bell JM, Johnson DB, et al. Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 2019;5:1195–204. https://doi.org/10.1001/jamaoncol.2019.1549 .
doi: 10.1001/jamaoncol.2019.1549
pubmed: 31318407
pmcid: 6646995
Niemeijer AN, Leung D, Huisman MC, Bahce I, Hoekstra OS, van Dongen G, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat Commun. 2018;9:4664. https://doi.org/10.1038/s41467-018-07131-y .
doi: 10.1038/s41467-018-07131-y
pubmed: 30405135
pmcid: 6220188
Yan Y, Zheng L, Du Q, Cui X, Dong K, Guo Y, et al. Interferon regulatory factor 1 (IRF-1) downregulates checkpoint kinase 1 (CHK1) through miR-195 to upregulate apoptosis and PD-L1 expression in Hepatocellular carcinoma (HCC) cells. Br J Cancer. 2021;125:101–11. https://doi.org/10.1038/s41416-021-01337-6 .
doi: 10.1038/s41416-021-01337-6
pubmed: 33772151
pmcid: 8257880
Zhang W, Liu Y, Yan Z, Yang H, Sun W, Yao Y, et al. IL-6 promotes PD-L1 expression in monocytes and macrophages by decreasing protein tyrosine phosphatase receptor type O expression in human hepatocellular carcinoma. J Immunother Cancer. 2020;8. https://doi.org/10.1136/jitc-2019-000285 .
Siu LL, Even C, Mesia R, Remenar E, Daste A, Delord JP, et al. Safety and efficacy of durvalumab with or without tremelimumab in patients with PD-L1-low/negative recurrent or metastatic HNSCC: the phase 2 CONDOR randomized clinical trial. JAMA Oncol. 2019;5:195–203. https://doi.org/10.1001/jamaoncol.2018.4628 .
doi: 10.1001/jamaoncol.2018.4628
pubmed: 30383184
Schofield DJ, Percival-Alwyn J, Rytelewski M, Hood J, Rothstein R, Wetzel L, et al. Activity of murine surrogate antibodies for durvalumab and tremelimumab lacking effector function and the ability to deplete regulatory T cells in mouse models of cancer. MAbs. 2021;13:1857100. https://doi.org/10.1080/19420862.2020.1857100 .
doi: 10.1080/19420862.2020.1857100
pubmed: 33397194
pmcid: 7831362
Cheng Y, Shi D, Xu Z, Gao Z, Si Z, Zhao Y, et al.
doi: 10.1021/acs.molpharmaceut.2c00084
pubmed: 36458832
pmcid: 9346612
Tijink BM, Perk LR, Budde M, Stigter-van Walsum M, Visser GW, Kloet RW, et al.
doi: 10.1007/s00259-009-1096-y
pubmed: 19259661
pmcid: 2709218
Shi D, Zhang Y, Xu Z, Si Z, Cheng Y, Cheng D, et al. Noninvasive evaluation of EGFR expression of digestive tumors using
doi: 10.1155/2022/3748315
pubmed: 35903247
pmcid: 9281432
England CG, Ehlerding EB, Hernandez R, Rekoske BT, Graves SA, Sun H, et al. Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled pembrolizumab. J Nucl Med. 2017;58:162–8. https://doi.org/10.2967/jnumed.116.177857 .
doi: 10.2967/jnumed.116.177857
pubmed: 27493273
pmcid: 5209640
Dong W, Wu X, Ma S, Wang Y, Nalin AP, Zhu Z, et al. The mechanism of anti-PD-L1 antibody efficacy against PD-L1-negative tumors identifies NK cells expressing PD-L1 as a cytolytic effector. Cancer Discov. 2019;9:1422–37. https://doi.org/10.1158/2159-8290.CD-18-1259 .
doi: 10.1158/2159-8290.CD-18-1259
pubmed: 31340937
pmcid: 7253691
Cyriac G, Gandhi L. Emerging biomarkers for immune checkpoint inhibition in lung cancer. Semin Cancer Biol. 2018;52:269–77. https://doi.org/10.1016/j.semcancer.2018.05.006 .
doi: 10.1016/j.semcancer.2018.05.006
pubmed: 29782924
Sha D, Jin Z, Budczies J, Kluck K, Stenzinger A, Sinicrope FA. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 2020;10:1808–25. https://doi.org/10.1158/2159-8290.CD-20-0522 .
doi: 10.1158/2159-8290.CD-20-0522
pubmed: 33139244
pmcid: 7710563
Zettlitz KA, Tavare R, Knowles SM, Steward KK, Timmerman JM, Wu AM. ImmunoPET of malignant and normal B cells with
doi: 10.1158/1078-0432.CCR-17-0855
pubmed: 28928164
pmcid: 5880625
Oliveira MC, Correia JDG. Biomedical applications of radioiodinated peptides. Eur J Med Chem. 2019;179:56–77. https://doi.org/10.1016/j.ejmech.2019.06.014 .
doi: 10.1016/j.ejmech.2019.06.014
pubmed: 31238251
Sugiura G, Kuhn H, Sauter M, Haberkorn U, Mier W. Radiolabeling strategies for tumor-targeting proteinaceous drugs. Molecules. 2014;19:2135–65. https://doi.org/10.3390/molecules19022135 .
doi: 10.3390/molecules19022135
pubmed: 24552984
pmcid: 6271853
Vorobyeva A, Schulga A, Rinne SS, Gunther T, Orlova A, Deyev S, et al. Indirect radioiodination of DARPin G3 using N-succinimidyl-para-iodobenzoate improves the contrast of HER2 molecular imaging. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20123047 .
Tolmachev V, Mume E, Sjoberg S, Frejd FY, Orlova A. Influence of valency and labelling chemistry on in vivo targeting using radioiodinated HER2-binding affibody molecules. Eur J Nucl Med Mol Imaging. 2009;36:692–701. https://doi.org/10.1007/s00259-008-1003-y .
doi: 10.1007/s00259-008-1003-y
pubmed: 19066886
Li H, Frankenfield AM, Houston R, Sekine S, Hao L. Thiol-cleavable biotin for chemical and enzymatic biotinylation and its application to mitochondrial TurboID proteomics. J Am Soc Mass Spectrom. 2021;32:2358–65. https://doi.org/10.1021/jasms.1c00079 .
doi: 10.1021/jasms.1c00079
pubmed: 33909971
pmcid: 8898397
Wang Y, Liu X, Hnatowich DJ. An improved synthesis of NHS-MAG3 for conjugation and radiolabeling of biomolecules with
doi: 10.1038/nprot.2007.144
pubmed: 17446896
Vorobyeva A, Ssmall es CA, Konovalova E, Guler R, Mitran B, Garousi J, et al. Comparison of tumortargeting properties of directly and indirectly radioiodinated designed ankyrin repeat protein (DARPin) G3 variants for molecular imaging of HER2. Int J Oncol 2019;54:1209–20. https://doi.org/10.3892/ijo.2019.4712 .
Mitran B, Guler R, Roche FP, Lindstrom E, Selvaraju RK, Fleetwood F, et al. Radionuclide imaging of VEGFR2 in glioma vasculature using biparatopic affibody conjugate: proof-of-principle in a murine model. Theranostics. 2018;8:4462–76. https://doi.org/10.7150/thno.24395 .
doi: 10.7150/thno.24395
pubmed: 30214632
pmcid: 6134937