Generation and Use of Glycosyl Radicals under Acidic Conditions: Glycosyl Sulfinates as Precursors.
Glycoside Synthesis
Glycosyl Radicals
Glycosyl Sulfinates
Minisci Reaction
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
11 Apr 2023
11 Apr 2023
Historique:
received:
12
12
2022
medline:
11
2
2023
pubmed:
11
2
2023
entrez:
10
2
2023
Statut:
ppublish
Résumé
We herein report a method that enables the generation of glycosyl radicals under highly acidic conditions. Key to the success is the design and use of glycosyl sulfinates as radical precursors, which are bench-stable solids and can be readily prepared from commercial starting materials. This development allows the installation of glycosyl units onto pyridine rings directly by the Minisci reaction. We further demonstrate the utility of this method in the late-stage modification of complex drug molecules, including the anticancer agent camptothecin. Experimental studies provide insight into the reaction mechanism.
Identifiants
pubmed: 36760072
doi: 10.1002/anie.202218303
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202218303Subventions
Organisme : National Natural Science Foundation of China
ID : 21922106 T2221004
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
C. R. Bertozzi, L. L. Kiessling, Science 2001, 291, 2357-2364.
in Essentials of Glycobiology (Eds.: A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart, M. E. Etzler), Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY), 2009.
For an excellent recent review, see:
H. Togo, W. He, Y. Waki, M. Yokoyama, Synlett 1998, 1998, 700-717;
Y. Yang, B. Yu, Chem. Rev. 2017, 117, 12281-12356;
L. Y. Xu, N. L. Fan, X.-G. Hu, Org. Biomol. Chem. 2020, 18, 5095-5109.
M. Yan, J. C. Lo, J. T. Edwards, P. S. Baran, J. Am. Chem. Soc. 2016, 138, 12692-12714.
For early reports of glycosyl radicals, see:
R. M. Adlington, J. E. Baldwin, A. Basak, R. P. Kozyrod, J. Chem. Soc. Chem. Commun. 1983, 944-945;
B. Giese, J. Dupuis, Angew. Chem. Int. Ed. Engl. 1983, 22, 622-623;
Angew. Chem. 1983, 95, 633-634;
G. E. Keck, E. J. Enholm, D. F. Kachensky, Tetrahedron Lett. 1984, 25, 1867-1870;
J. Dupuis, B. Giese, D. Rüegge, H. Fischer, H.-G. Korth, R. Sustmann, Angew. Chem. Int. Ed. Engl. 1984, 23, 896-898;
Angew. Chem. 1984, 96, 887-888;
B. Giese, J. Dupuis, Tetrahedron Lett. 1984, 25, 1349-1352;
B. Giese, J. Dupuis, M. Leising, M. Nix, H. J. Lindner, Carbohydr. Res. 1987, 171, 329-341;
B. Giese, Pure Appl. Chem. 1988, 60, 1655-1658.
For the use of glycosyl halides, see:
R. S. Andrews, J. J. Becker, M. R. Gagné, Angew. Chem. Int. Ed. 2010, 49, 7274-7276;
Angew. Chem. 2010, 122, 7432-7434;
R. S. Andrews, J. J. Becker, M. R. Gagné, Org. Lett. 2011, 13, 2406-2409;
R. S. Andrews, J. J. Becker, M. R. Gagné, Angew. Chem. Int. Ed. 2012, 51, 4140-4143;
Angew. Chem. 2012, 124, 4216-4219;
L. Nicolas, P. Angibaud, I. Stansfield, P. Bonnet, L. Meerpoel, S. Reymond, J. Cossy, Angew. Chem. Int. Ed. 2012, 51, 11101-11104;
Angew. Chem. 2012, 124, 11263-11266;
J. Liu, H. Gong, Org. Lett. 2018, 20, 7991-7995;
L. Adak, S. Kawamura, G. Toma, T. Takenaka, K. Isozaki, H. Takaya, A. Orita, H. C. Li, T. K. M. Shing, M. Nakamura, J. Am. Chem. Soc. 2017, 139, 10693-10701;
Y. Jiang, Q. Wang, X. Zhang, M. J. Koh, Chem 2021, 7, 3377-3392;
C.-Y. Li, Y. Ma, Z.-W. Lei, X.-G. Hu, Org. Lett. 2021, 23, 8899-8904;
Q. Sun, H. Zhang, Q. Wang, T. Qiao, G. He, G. Chen, Angew. Chem. Int. Ed. 2021, 60, 19620-19625;
Angew. Chem. 2021, 133, 19772-19777;
Q. Pan, Q.-M. Zhou, P.-X. Rui, X.-G. Hu, Org. Biomol. Chem. 2022, 20, 5452-5462;
Y. Hidaka, N. Kiya, M. Yoritate, K. Usui, G. Hirai, Chem. Commun. 2020, 56, 4712-4715;
P. Ji, Y. Zhang, F. Gao, F. Bi, W. Wang, Chem. Sci. 2020, 11, 13079-13084.
J. L. Chiara, E. Sesmilo, Angew. Chem. Int. Ed. 2002, 41, 3242-3246;
Angew. Chem. 2002, 114, 3376-3380;
J. D. Parrish, R. D. Little, Org. Lett. 2002, 4, 1439-1442;
G. A. Nishiguchi, R. D. Little, J. Org. Chem. 2005, 70, 5249-5256.
For sulfides as glycosyl radical precursors, see:
M. Sakata, M. Haga, S. Tejima, Carbohydr. Res. 1970, 13, 379-390;
P. K. Kancharla, C. Navuluri, D. Crich, Angew. Chem. Int. Ed. 2012, 51, 11105-11109;
Angew. Chem. 2012, 124, 11267-11271;
N. Kiya, Y. Hidaka, K. Usui, G. Hirai, Org. Lett. 2019, 21, 1588-1592. For excellent reviews:
S. Z. Zard, Angew. Chem. Int. Ed. Engl. 1997, 36, 672-685;
Angew. Chem. 1997, 109, 724-737;
S. Z. Zard, Org. Biomol. Chem. 2016, 14, 6891-6912;
R. Z. Mao, F. Guo, D. C. Xiong, Q. Li, J. Duan, X.-S. Ye, Org. Lett. 2015, 17, 5606-5609;
B. H. Li, W. Yao, H. Yang, C. Wu, D. C. Xiong, Y. Yin, X.-S. Ye, Org. Chem. Front. 2020, 7, 1255-1259;
R. Z. Mao, D. C. Xiong, F. Guo, Q. Li, J. Duan, X.-S. Ye, Org. Chem. Front. 2016, 3, 737-743;
Y. Yu, D. C. Xiong, R. Z. Mao, X.-S. Ye, J. Org. Chem. 2016, 81, 7134-7138.
For the use of glycosyl selenides, see:
H. G. Korth, R. Sustmann, J. Dupuis, B. Giese, J. Chem. Soc. Perkin Trans. 2 1986, 1453-1459;
Y. Araki, T. Endo, M. Tanji, J. i. Nagasawa, Y. Ishido, Tetrahedron Lett. 1987, 28, 5853-5856;
R. SanMartin, B. Tavassoli, K. E. Walsh, D. S. Walter, T. Gallagher, Org. Lett. 2000, 2, 4051-4054.
For the use of glycosyl tellurides, see:
W. He, H. Togo, Y. Waki, M. Yokoyama, J. Chem. Soc. Perkin Trans. 1 1998, 2425-2434;
S. Yamago, H. Miyazoe, J. I. Yoshida, Tetrahedron Lett. 1999, 40, 2339-2342;
K. Masuda, M. Nagatomo, M. Inoue, Nat. Chem. 2017, 9, 207-212.
For precursors to “inverse” anomeric radicals, see:
A. Dumoulin, J. K. Matsui, Á. Gutieŕrez Bonet, G. A. Molander, Angew. Chem. Int. Ed. 2018, 57, 6614-6618;
Angew. Chem. 2018, 130, 6724-6728;
S. O. Badir, A. Dumoulin, J. K. Matsui, G. A. Molander, Angew. Chem. Int. Ed. 2018, 57, 6610-6613;
Angew. Chem. 2018, 130, 6720-6723;
P. Ji, Y. Zhang, Y. Wei, H. Huang, W. Hu, P. A. Mariano, W. Wang, Org. Lett. 2019, 21, 3086-3092;
I. C. S. Wan, M. D. Witte, A. J. Minnaard, Org. Lett. 2019, 21, 7669-7673.
For the use of glycosyl stannanes, see:
F. Zhu, E. Miller, S.-Q. Zhang, D. Yi, S. O'Neill, X. Hong, M. A. Walczak, J. Am. Chem. Soc. 2018, 140, 18140-18150;
F. Zhu, S. Q. Zhang, Z. Chen, J. Rui, X. Hong, M. A. Walczak, J. Am. Chem. Soc. 2020, 142, 11102-11113.
For the use of borates, see:
D. Takeda, M. Yoritate, H. Yasutomi, S. Chiba, T. Moriyama, A. Yokoo, K. Usui, G. Hirai, Org. Lett. 2021, 23, 1940-1944;
E. M. Miller, M. A. Walczak, Org. Lett. 2021, 23, 4289-4293.
For the use of dihydropyridine derivatives, see:
Y. Wei, B. Ben-Zvi, T. Diao, Angew. Chem. Int. Ed. 2021, 60, 9433-9438;
Angew. Chem. 2021, 133, 9519-9524;
Y. Wei, J. Lam, T. Diao, Chem. Sci. 2021, 12, 11414-11419;
Y. Wei, Q. Wang, M. J. Koh, Angew. Chem. Int. Ed. 2023, 62, e202214247;
Angew. Chem. 2023, 135, e202214247;
Q. Wang, J. Duan, P. Tang, G. Chen, G. He, Sci. China Chem. 2020, 63, 1613-1618;
J. A. Milligan, J. P. Phelan, S. O. Badir, G. A. Molander, Angew. Chem. Int. Ed. 2019, 58, 6152-6163;
Angew. Chem. 2019, 131, 6212-6224.
D. Mazéas, T. Skrydstrup, O. Doumeix, J.-M. Beau, Angew. Chem. Int. Ed. Engl. 1994, 33, 1383-1386;
Angew. Chem. 1994, 106, 1457-1459;
Q. Wang, Q. Sun, Y. Jiang, H. Zhang, L. Yu, C. Tian, G. Chen, M. J. Koh, Nat. Synth. 2022, 1, 235-244.
W. Shang, S. N. Su, R. Shi, Z. D. Mou, G. Q. Yu, X. Zhang, D. Niu, Angew. Chem. Int. Ed. 2021, 60, 385-390;
Angew. Chem. 2021, 133, 389-394;
D. Xie, Y. Wang, X. Zhang, Z. Fu, D. Niu, Angew. Chem. Int. Ed. 2022, 61, e202204922;
Angew. Chem. 2022, 134, e202204922.
L. Q. Wan, X. Zhang, Y. Zou, R. Shi, J. G. Cao, S.-Y. Xu, L. F. Deng, L. Zhou, Y. Gong, X. Shu, G. Y. Lee, H. Ren, L. Dai, S. Qi, K. N. Houk, D. Niu, J. Am. Chem. Soc. 2021, 143, 11919-11926;
C. Zhang, H. Zuo, G. Y. Lee, Y. Zou, Q.-D. Dang, K. N. Houk, D. Niu, Nat. Chem. 2022, 14, 686-694;
C. Zhang, S.-Y. Xu, H. Zuo, X. Zhang, Q.-D. Dang, D. Niu, Nat. Synth. 2023, https://doi.org/10.1038/s44160-022-00214-1.
Y. Fujiwara, J. A. Dixon, F. O'Hara, E. D. Funder, D. D. Dixon, R. A. Rodriguez, R. D. Baxter, B. Herle, N. Sach, M. R. Collins, Y. Ishihara, P. S. Baran, Nature 2012, 492, 95-99;
Y. Fujiwara, J. A. Dixon, R. A. Rodriguez, R. D. Baxter, D. D. Dixon, M. R. Collins, D. G. Blackmond, P. S. Baran, J. Am. Chem. Soc. 2012, 134, 1494-1497;
Q. Lu, J. Zhang, P. Peng, G. Zhang, Z. Huang, H. Yi, J. T. Miller, A. Lei, Chem. Sci. 2015, 6, 4851-4854;
J. Wen, W. Shi, F. Zhang, D. Liu, S. Tang, H. Wang, X. M. Lin, A. Lei, Org. Lett. 2017, 19, 3131-3134;
J. M. Smith, J. A. Dixon, J. N. deGruyter, P. S. Baran, J. Med. Chem. 2019, 62, 2256-2264;
S. Tang, Y. Liu, A. Lei, Chem 2018, 4, 27-45;
S. Liang, K. Hofman, M. Friedrich, G. Manolikakes, Eur. J. Org. Chem. 2020, 4664-4676;
G. Liu, C. Fan, J. Wu, Org. Biomol. Chem. 2015, 13, 1592-1599;
Z. He, P. Tan, C. Ni, J. Hu, Org. Lett. 2015, 17, 1838-1841.
G. Qiu, K. Zhou, L. Gao, J. Wu, Org. Chem. Front. 2018, 5, 691-705;
D. Zheng, J. Wu, Sulfur Dioxide Insertion Reactions for Organic Synthesis Nature, Springer, Berlin, 2017;
S. Chen, Y. Li, M. Wang, X. Jiang, Green Chem. 2020, 22, 322-326;
Y. Meng, M. Wang, X. Jiang, Angew. Chem. Int. Ed. 2020, 59, 1346-1353;
Angew. Chem. 2020, 132, 1362-1369;
M. Wang, X. Jiang, ACS Sustainable Chem. Eng. 2022, 10, 671-677;
D. Zeng, M. Wang, W.-P. Deng, X. Jiang, Org. Chem. Front. 2020, 7, 3956-3966;
Y. Li, X. Jiang, Org. Lett. 2021, 23, 4657-4661;
J. A. Andrews, M. C. Willis, Synthesis 2022, 54, 1695-1707;
M. J. Tilby, D. F. Dewez, L. R. E. Pantaine, A. Hall, C. M. Lamenca, M. C. Willis, ACS Catal. 2022, 12, 6060-6067;
S. M. Hell, C. F. Meyer, A. Misale, J. B. I. Sap, K. E. Christensen, M. C. Willis, A. A. Trabanco, V. Gouverneur, Angew. Chem. Int. Ed. 2020, 59, 11620-11626;
Angew. Chem. 2020, 132, 11717-11723;
J. A. Andrews, L. R. E. Pantaine, C. F. Palmer, D. L. Poole, M. C. Willis, Org. Lett. 2021, 23, 8488-8493.
For Minisci Reaction Reviews: see 18e and R. S. J. Proctor, R. J. Phipps, Angew. Chem. Int. Ed. 2019, 58, 13666-13699;
Angew. Chem. 2019, 131, 13802-13837.
J. J. Day, D. L. Neill, S. Xu, M. Xian, Org. Lett. 2017, 19, 3819-3822;
R. J. Reddy, A. H. Kumari, RSC Adv. 2021, 11, 9130-9221;
J. McKnight, A. Shavnya, N. W. Sach, D. C. Blakemore, I. B. Moses, M. C. Willis, Angew. Chem. Int. Ed. 2022, 61, e202116775;
Angew. Chem. 2022, 134, e202116775.
Deposition number 2216058 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
J. J. Chen, J. C. Drach, L. B. Townsend, J. Org. Chem. 2003, 68, 4170-4178;
G. Wang, J. Wan, Y. Hu, X. Wu, M. Prhavc, N. Dyatkina, V. K. Rajwanshi, D. B. Smith, A. Jekle, A. Kinkade, J. A. Symons, Z. Jin, J. Deval, Q. Zhang, Y. Tam, S. Chanda, L. Blatt, L. Beigelman, J. Med. Chem. 2016, 59, 4611-4624;
S. Liu, A. Liu, Y. Zhang, W. Wang, Chem. Sci. 2017, 8, 4044-4050.
L. Xia, W. Fan, X.-A. Yuan, S. Yu, ACS Catal. 2021, 11, 9397-9406.
J. Choi, G. Laudadio, E. Godineau, P. S. Baran, J. Am. Chem. Soc. 2021, 143, 11927-11933.
F. Li, T. Jiang, Q. Li, X. Ling, Am. J. Cancer Res. 2017, 7, 2350-2394.
F. G. Bordwell, Acc. Chem. Res. 1988, 21, 456-463.
C. M. Jones, M. J. Burkitt, J. Am. Chem. Soc. 2003, 125, 6946-6954.
M. Griesser, J.-P. R. Chauvin, D. A. Pratt, Chem. Sci. 2018, 9, 7218-7229.