Bone-Targeting Exosome Mimetics Engineered by Bioorthogonal Surface Functionalization for Bone Tissue Engineering.
Exosome mimetics
bioorthogonal engineering
bone targeting
click chemistry
drug delivery
Journal
Nano letters
ISSN: 1530-6992
Titre abrégé: Nano Lett
Pays: United States
ID NLM: 101088070
Informations de publication
Date de publication:
22 02 2023
22 02 2023
Historique:
pmc-release:
22
02
2024
medline:
18
4
2023
pubmed:
11
2
2023
entrez:
10
2
2023
Statut:
ppublish
Résumé
Extracellular vesicles have received a great interest as safe biocarriers in biomedical engineering. There is a need to develop more efficient delivery strategies to improve localized therapeutic efficacy and minimize off-target adverse effects. Here, exosome mimetics (EMs) are reported for bone targeting involving the introduction of hydroxyapatite-binding moieties through bioorthogonal functionalization. Bone-binding ability of the engineered EMs is verified with hydroxyapatite-coated scaffolds and an ex vivo bone-binding assay. The EM-bound construct provided a biocompatible substrate for cell adhesion, proliferation, and osteogenic differentiation. Particularly, the incorporation of Smoothened agonist (SAG) into EMs greatly increased the osteogenic capacity through the activation of hedgehog signaling. Furthermore, the scaffold integrated with EM/SAG significantly improved in vivo reossification. Lastly, biodistribution studies confirmed the accumulation of systemically administered EMs in bone tissue. This facile engineering strategy could be a versatile tool to promote bone regeneration, offering a promising nanomedicine approach to the sophisticated treatment of bone diseases.
Identifiants
pubmed: 36762874
doi: 10.1021/acs.nanolett.2c04159
pmc: PMC10106420
mid: NIHMS1874953
doi:
Substances chimiques
Hedgehog Proteins
0
Hydroxyapatites
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1202-1210Subventions
Organisme : NIDCR NIH HHS
ID : R01 DE027332
Pays : United States
Organisme : NIDCR NIH HHS
ID : R01 DE031711
Pays : United States
Références
Angew Chem Int Ed Engl. 2012 Nov 19;51(47):11836-40
pubmed: 23081905
ACS Appl Bio Mater. 2021 Jun 21;4(6):5189-5200
pubmed: 34661086
Nat Nanotechnol. 2008 Mar;3(3):145-50
pubmed: 18654486
Plast Reconstr Surg. 2017 Jun;139(6):1385-1396
pubmed: 28198775
Biomaterials. 2020 Jul;247:119985
pubmed: 32272301
Bioengineering (Basel). 2021 Oct 01;8(10):
pubmed: 34677210
J Control Release. 2015 Dec 10;219:396-405
pubmed: 26241750
Small. 2020 Apr;16(16):e2000012
pubmed: 32239653
Int J Mol Sci. 2017 Aug 25;18(9):
pubmed: 28841158
Nat Chem Biol. 2014 Jul;10(7):512-23
pubmed: 24937069
Nat Med. 2005 Apr;11(4):367-8
pubmed: 15812508
Front Bioeng Biotechnol. 2019 Nov 27;7:352
pubmed: 31828066
Tissue Eng Part A. 2016 Dec;22(23-24):1357-1366
pubmed: 27702396
ACS Nano. 2020 Sep 22;14(9):11973-11984
pubmed: 32897692
ACS Appl Bio Mater. 2020 Apr 20;3(4):2334-2343
pubmed: 32954226
Chem Commun (Camb). 2013 Dec 7;49(94):11007-22
pubmed: 24145483
Chem Soc Rev. 2012 Apr 7;41(7):2656-72
pubmed: 22189429
Methods Mol Biol. 2011;698:459-84
pubmed: 21431538
Adv Funct Mater. 2020 Mar 17;30(12):
pubmed: 32952492
Rejuvenation Res. 2010 Aug;13(4):429-38
pubmed: 20583954
Drug Discov Today. 2017 Sep;22(9):1336-1350
pubmed: 28487069
J Biol Eng. 2020 Mar 06;14:6
pubmed: 32165922
J Transl Med. 2011 Mar 22;9:29
pubmed: 21418664
Bioconjug Chem. 2016 Apr 20;27(4):927-36
pubmed: 26930274
Nat Protoc. 2012 Dec;7(12):2112-26
pubmed: 23154783
FEBS Lett. 2015 May 8;589(11):1257-65
pubmed: 25862500
Theranostics. 2014 Feb 12;4(4):420-31
pubmed: 24578725
ACS Nano. 2014 Mar 25;8(3):2048-63
pubmed: 24499346
Adv Funct Mater. 2020 Oct 22;30(43):
pubmed: 33122980
Sci Adv. 2020 Apr 22;6(17):eaaz7822
pubmed: 32494652
Nat Cell Biol. 2019 Jan;21(1):9-17
pubmed: 30602770
Mol Pharm. 2021 Apr 5;18(4):1677-1689
pubmed: 33760625