Global dynamics of neural mass models.
Journal
PLoS computational biology
ISSN: 1553-7358
Titre abrégé: PLoS Comput Biol
Pays: United States
ID NLM: 101238922
Informations de publication
Date de publication:
02 2023
02 2023
Historique:
received:
28
08
2022
accepted:
03
02
2023
revised:
23
02
2023
pubmed:
11
2
2023
medline:
3
3
2023
entrez:
10
2
2023
Statut:
epublish
Résumé
Neural mass models are used to simulate cortical dynamics and to explain the electrical and magnetic fields measured using electro- and magnetoencephalography. Simulations evince a complex phase-space structure for these kinds of models; including stationary points and limit cycles and the possibility for bifurcations and transitions among different modes of activity. This complexity allows neural mass models to describe the itinerant features of brain dynamics. However, expressive, nonlinear neural mass models are often difficult to fit to empirical data without additional simplifying assumptions: e.g., that the system can be modelled as linear perturbations around a fixed point. In this study we offer a mathematical analysis of neural mass models, specifically the canonical microcircuit model, providing analytical solutions describing slow changes in the type of cortical activity, i.e. dynamical itinerancy. We derive a perturbation analysis up to second order of the phase flow, together with adiabatic approximations. This allows us to describe amplitude modulations in a relatively simple mathematical format providing analytic proof-of-principle for the existence of semi-stable states of cortical dynamics at the scale of a cortical column. This work allows for model inversion of neural mass models, not only around fixed points, but over regions of phase space that encompass transitions among semi or multi-stable states of oscillatory activity. Crucially, these theoretical results speak to model inversion in the context of multiple semi-stable brain states, such as the transition between interictal, pre-ictal and ictal activity in epilepsy.
Identifiants
pubmed: 36763644
doi: 10.1371/journal.pcbi.1010915
pii: PCOMPBIOL-D-22-01288
pmc: PMC9949652
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1010915Subventions
Organisme : Wellcome Trust
ID : 205103/Z/16/Z
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 209164/Z/17/Z
Pays : United Kingdom
Informations de copyright
Copyright: © 2023 Cooray et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
There are no competing interests for any of the authors.
Références
Front Comput Neurosci. 2013 May 28;7:57
pubmed: 23755005
Electroencephalogr Clin Neurophysiol Suppl. 1978;(34):9-18
pubmed: 285858
Science. 2008 Jul 4;321(5885):48-50
pubmed: 18599763
Exp Neurol. 1959 Nov;1:491-527
pubmed: 14435979
J Neurosci Methods. 2016 Feb 15;260:233-51
pubmed: 25843066
J Neural Transm Suppl. 2006;(70):27-30
pubmed: 17017505
Proc R Soc Lond B Biol Sci. 1984 Mar 22;221(1222):87-102
pubmed: 6144106
Nat Commun. 2018 Mar 14;9(1):1088
pubmed: 29540685
Biol Cybern. 1994;71(1):27-35
pubmed: 8054384
Neuron. 2012 Nov 21;76(4):695-711
pubmed: 23177956
Neuroimage. 2003 Nov;20(3):1743-55
pubmed: 14642484
Neural Comput. 1999 Oct 1;11(7):1621-71
pubmed: 10490941
IEEE Trans Biomed Eng. 2003 May;50(5):540-8
pubmed: 12769430
Science. 2015 Nov 27;350(6264):aac9462
pubmed: 26612957
Philos Trans R Soc Lond B Biol Sci. 2000 Feb 29;355(1394):237-52
pubmed: 10724458
J Comput Neurosci. 2009 Apr;26(2):159-70
pubmed: 19169801
PLoS Comput Biol. 2020 Nov 9;16(11):e1008430
pubmed: 33166277
eNeuro. 2020 Mar 24;7(2):
pubmed: 32066612
Neurosci Lett. 1992 Mar 2;136(2):213-5
pubmed: 1641193
Neurobiol Aging. 2018 Mar;63:88-95
pubmed: 29245058
Biol Cybern. 2005 Aug;93(2):91-108
pubmed: 16059785
Biol Cybern. 2000 Oct;83(4):367-78
pubmed: 11039701
Sci Rep. 2014 Apr 01;4:4545
pubmed: 24686330
Brain Connect. 2014 Dec;4(10):791-811
pubmed: 25131838
Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):E4185-94
pubmed: 24145451
Neural Comput. 2011 Dec;23(12):3232-86
pubmed: 21919787
J Comput Neurosci. 2021 Feb;49(1):57-67
pubmed: 33420615
Neuroimage. 2011 Apr 1;55(3):920-32
pubmed: 21195779
Neuroimage. 2021 Sep;238:118243
pubmed: 34116151
Entropy (Basel). 2021 Sep 17;23(9):
pubmed: 34573845
J Neurol Neurosurg Psychiatry. 2003 Jan;74(1):51-5
pubmed: 12486266
Biol Cybern. 1995 Sep;73(4):357-66
pubmed: 7578475
Chaos. 2016 Dec;26(12):123113
pubmed: 28039987
Neural Comput. 2006 Dec;18(12):3052-68
pubmed: 17052158
Kybernetik. 1973 Sep;13(2):55-80
pubmed: 4767470
Neuroimage. 2017 Jan 15;145(Pt B):377-388
pubmed: 27477535
Phys Life Rev. 2012 Mar;9(1):51-73
pubmed: 22119154
Neuroimage. 2011 Jun 1;56(3):1202-21
pubmed: 21182971
IEEE Trans Biomed Eng. 1999 Mar;46(3):245-59
pubmed: 10097460
Electroencephalogr Clin Neurophysiol. 1966 Jul;21(1):10-22
pubmed: 4165360
Neuroimage. 2015 Sep;118:508-19
pubmed: 26032883
Brain. 2014 Aug;137(Pt 8):2210-30
pubmed: 24919973
Naturwissenschaften. 1977 Oct;64(10):507-17
pubmed: 337161
Cogn Neurodyn. 2008 Jun;2(2):121-36
pubmed: 19003479
Ann Neurol. 1994 May;35(5):586-91
pubmed: 8179304
Science. 2006 Sep 15;313(5793):1626-8
pubmed: 16973878
Neuroimage. 2010 Sep;52(3):1041-58
pubmed: 20045068
Entropy (Basel). 2018 Aug 03;20(8):
pubmed: 33265663
J Neurosci. 2012 May 16;32(20):7082-90
pubmed: 22593076
Kybernetik. 1974 May 31;15(1):27-37
pubmed: 4853232
Entropy (Basel). 2021 Apr 27;23(5):
pubmed: 33925736
J Physiol. 1952 Aug;117(4):500-44
pubmed: 12991237
J Comput Neurosci. 2009 Apr;26(2):171-83
pubmed: 19083088
Biol Cybern. 1977 Feb 7;25(3):163-76
pubmed: 836920