Computational modeling reveals inflammation-driven dilatation of the pulmonary autograft in aortic position.

Homogenized constrained mixture theory Inflammation Pulmonary interposition autograft Vascular remodeling

Journal

Biomechanics and modeling in mechanobiology
ISSN: 1617-7940
Titre abrégé: Biomech Model Mechanobiol
Pays: Germany
ID NLM: 101135325

Informations de publication

Date de publication:
Oct 2023
Historique:
received: 16 05 2022
accepted: 17 01 2023
medline: 22 9 2023
pubmed: 11 2 2023
entrez: 10 2 2023
Statut: ppublish

Résumé

The pulmonary autograft in the Ross procedure, where the aortic valve is replaced by the patient's own pulmonary valve, is prone to failure due to dilatation. This is likely caused by tissue degradation and maladaptation, triggered by the higher experienced mechanical loads in aortic position. In order to further grasp the causes of dilatation, this study presents a model for tissue growth and remodeling of the pulmonary autograft, using the homogenized constrained mixture theory and equations for immuno- and mechano-mediated mass turnover. The model outcomes, compared to experimental data from an animal model of the pulmonary autograft in aortic position, show that inflammation likely plays an important role in the mass turnover of the tissue constituents and therefore in the autograft dilatation over time. We show a better match and prediction of long-term outcomes assuming immuno-mediated mass turnover, and show that there is no linear correlation between the stress-state of the material and mass production. Therefore, not only mechanobiological homeostatic adaption should be taken into account in the development of growth and remodeling models for arterial tissue in similar applications, but also inflammatory processes.

Identifiants

pubmed: 36764979
doi: 10.1007/s10237-023-01694-6
pii: 10.1007/s10237-023-01694-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1555-1568

Subventions

Organisme : Fonds Wetenschappelijk Onderzoek
ID : 1A6519N
Organisme : Fonds Wetenschappelijk Onderzoek
ID : 1S70220
Organisme : Onderzoeksraad, KU Leuven
ID : C2-ADAPT

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Aboud A, Charitos EI, Fujita B et al (2021) Long-term outcomes of patients undergoing the Ross procedure. J Am Coll Cardiol 77(11):1412–1422. https://doi.org/10.1016/j.jacc.2021.01.034
doi: 10.1016/j.jacc.2021.01.034
Adair-Kirk TL, Senior RM (2008) Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol 40(6–7):1101–1110. https://doi.org/10.1016/j.biocel.2007.12.005
doi: 10.1016/j.biocel.2007.12.005
Baek S, Rajagopal KR, Humphrey JD (2006) A theoretical model of enlarging intracranial fusiform aneurysms. J Biomech Eng 128(1):142–149. https://doi.org/10.1115/1.2132374 . arXiv: 3364.57235
doi: 10.1115/1.2132374
Bellini C, Ferruzzi J, Roccabianca S et al (2014) A microstructurally motivated model of arterial wall mechanics with mechanobiological implications. Ann Biomed Eng 42(3):488–502. https://doi.org/10.1007/s10439-013-0928-x
doi: 10.1007/s10439-013-0928-x
Braeu FA, Seitz A, Aydin RC et al (2017) Homogenized constrained mixture models for anisotropic volumetric growth and remodeling. Biomech Model Mechanobiol 16(3):889–906. https://doi.org/10.1007/s10237-016-0859-1
doi: 10.1007/s10237-016-0859-1
Charitos EI, Takkenberg JJ, Hanke T et al (2012) Reoperations on the pulmonary autograft and pulmonary homograft after the Ross procedure: an update on the German Dutch Ross Registry. J Thorac Cardiovasc Surg 144(4):813–823. https://doi.org/10.1016/j.jtcvs.2012.07.005
doi: 10.1016/j.jtcvs.2012.07.005
Cornelissen H, Arrowsmith JE (2006) Preoperative assessment for cardiac surgery. Cont Educ Anaesth Crit Care and Pain 6(3):109–113. https://doi.org/10.1093/bjaceaccp/mkl013
doi: 10.1093/bjaceaccp/mkl013
Cyron CJ, Aydin RC, Humphrey JD (2016) A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue. Biomech Model Mechanobiol 15(6):1389–1403. https://doi.org/10.1007/s10237-016-0770-9
doi: 10.1007/s10237-016-0770-9
David TE (2010) Reoperations after the ross procedure. Circulation 122(12):1139–1140. https://doi.org/10.1161/CIRCULATIONAHA.110.977991
doi: 10.1161/CIRCULATIONAHA.110.977991
Drews JD, Pepper VK, Best CA et al (2020) Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Sci Trans Med. https://doi.org/10.1126/scitranslmed.aax6919
doi: 10.1126/scitranslmed.aax6919
El-Hamamsy I, Poirier NC (2013) What is the role of the ross procedure in today’s armamentarium? Can J Cardiol 29(12):1569–1576. https://doi.org/10.1016/j.cjca.2013.08.009
doi: 10.1016/j.cjca.2013.08.009
El-Hamamsy I, Eryigit Z, Stevens LM et al (2010) Long-term outcomes after autograft versus homograft aortic root replacement in adults with aortic valve disease: A randomised controlled trial. The Lancet 376(9740):524–531. https://doi.org/10.1016/S0140-6736(10)60828-8
doi: 10.1016/S0140-6736(10)60828-8
Famaey N, Vastmans J, Fehervary H et al (2018) Numerical simulation of arterial remodeling in pulmonary autografts. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 98(12):2239–2257. https://doi.org/10.1002/zamm.201700351
doi: 10.1002/zamm.201700351
Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61(1–3):1–48. https://doi.org/10.1023/A:1010835316564
doi: 10.1023/A:1010835316564
Humphrey JD, Schwartz MA (2021) Vascular mechanobiology: homeostasis, adaptation, and disease. Annu Rev Biomed Eng 23:1–27. https://doi.org/10.1146/annurev-bioeng-092419-060810
doi: 10.1146/annurev-bioeng-092419-060810
Irons L, Humphrey JD (2020) Cell signaling model for arterial mechanobiology. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1008161
doi: 10.1371/journal.pcbi.1008161
Irons L, Latorre M, Humphrey JD (2021) From transcript to tissue: multiscale modeling from cell signaling to matrix remodeling. Ann Bio Eng 49(7):1701–1715. https://doi.org/10.1007/s10439-020-02713-8
doi: 10.1007/s10439-020-02713-8
Kotas ME, Medzhitov R (2015) Homeostasis, inflammation, and disease susceptibility. Cell 160(5):816–827. https://doi.org/10.1016/j.cell.2015.02.010
doi: 10.1016/j.cell.2015.02.010
Latorre M, Humphrey JD (2018) Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension. Biomech Model Mechanobiol 17(5):1497–1511. https://doi.org/10.1007/s10237-018-1041-8
doi: 10.1007/s10237-018-1041-8
Latorre M, Bersi MR, Humphrey JD (2019) Computational modeling predicts immuno-mechanical mechanisms of maladaptive aortic remodeling in hypertension. Int J Eng Sci 141:35–46. https://doi.org/10.1016/j.ijengsci.2019.05.014
doi: 10.1016/j.ijengsci.2019.05.014
Latorre M, Spronck B, Humphrey JD (2021) Complementary roles of mechanotransduction and inflammation in vascular homeostasis. Proc R Soc A Math Phys Eng Sci. https://doi.org/10.1098/rspa.2020.0622
doi: 10.1098/rspa.2020.0622
Maes L, Cloet AS, Fourneau I et al (2021) A homogenized constrained mixture model of restenosis and vascular remodelling after balloon angioplasty. J R Soc Interface. https://doi.org/10.1098/rsif.2021.0068
doi: 10.1098/rsif.2021.0068
Mazine A, Rocha RV, El-Hamamsy I et al (2018) Ross procedure vs mechanical aortic valve replacement in adults: a systematic review and meta-analysis. JAMA Cardiol 3(10):978–987. https://doi.org/10.1001/jamacardio.2018.2946
doi: 10.1001/jamacardio.2018.2946
Mookhoek A, de Heer E, Bogers AJ et al (2010) Pulmonary autograft valve explants show typical degeneration. J Thorac Cardiovasc Surg 139(6):1416–1419. https://doi.org/10.1016/j.jtcvs.2010.01.020
doi: 10.1016/j.jtcvs.2010.01.020
Mookhoek A, Krishnan K, Chitsaz S et al (2016) Biomechanics of Failed Pulmonary Autografts Compared With Normal Pulmonary Roots. Ann Thorac Surg 102(6):1996–2002. https://doi.org/10.1016/j.athoracsur.2016.05.010
doi: 10.1016/j.athoracsur.2016.05.010
Mousavi SJ, Farzaneh S, Avril S (2019) Patient-specific predictions of aneurysm growth and remodeling in the ascending thoracic aorta using the homogenized constrained mixture model. Biomech Model Mechanobiol 18(6):1895–1913. https://doi.org/10.1007/s10237-019-01184-8
doi: 10.1007/s10237-019-01184-8
Nappi F, Carotenuto AR, Di Vito D et al (2016) Stress-shielding, growth and remodeling of pulmonary artery reinforced with copolymer scaffold and transposed into aortic position. Biomech Model Mechanobiol 15(5):1141–1157. https://doi.org/10.1007/s10237-015-0749-y . arXiv:1912.07884
doi: 10.1007/s10237-015-0749-y
Rabkin-Aikawa E, Aikawa M, Farber M et al (2004) Clinical pulmonary autograft valves: Pathologic evidence of adaptive remodeling in the aortic site. J Thorac Cardiovasc Surg 128(4):552–561. https://doi.org/10.1016/j.jtcvs.2004.04.016
doi: 10.1016/j.jtcvs.2004.04.016
Ramachandra AB, Latorre M, Szafron JM et al (2020) Vascular adaptation in the presence of external support - A modeling study. J Mech Behav Biomed Mater 110(103):943. https://doi.org/10.1016/j.jmbbm.2020.103943
doi: 10.1016/j.jmbbm.2020.103943
Ross DN (1967) Replacement of aortic and mitral valves with a pulmonary autograft. Lancet 2(7523):956–958. https://doi.org/10.1016/s0140-6736(67)90794-5
doi: 10.1016/s0140-6736(67)90794-5
Schoof PH, Hazekamp MG, Van Wermeskerken GK et al (1998) Disproportionate enlargement of the pulmonary autograft in the aortic position in the growing pig. J Thorac Cardiovasc Surg 115(6):1264–1272. https://doi.org/10.1016/S0022-5223(98)70208-9
doi: 10.1016/S0022-5223(98)70208-9
Schoof PH, Gittenberger-de Groot AC, De Heer E et al (2000) Remodeling of the porcine pulmonary autograft wall in the aortic position. J Thorac Cardiovasc Surg 120(1):55–64. https://doi.org/10.1067/mtc.2000.106970
doi: 10.1067/mtc.2000.106970
Schoof PH, Takkenberg JJ, van Suylen RJ et al (2006) Degeneration of the pulmonary autograft: an explant study. J Thorac Cardiovasc Surg 132(6):1426–1432. https://doi.org/10.1016/j.jtcvs.2006.07.035
doi: 10.1016/j.jtcvs.2006.07.035
Stulak JM, Burkhart HM, Sundt TM et al (2010) Spectrum and outcome of reoperations after the ross procedure. Circulation 122(12):1153–1158. https://doi.org/10.1161/CIRCULATIONAHA.109.897538
doi: 10.1161/CIRCULATIONAHA.109.897538
Takkenberg JJ, Klieverik LM, Schoof PH et al (2009) The Ross procedure: a systematic review and meta-analysis. Circulation 119(2):222–228. https://doi.org/10.1161/CIRCULATIONAHA.107.726349
doi: 10.1161/CIRCULATIONAHA.107.726349
Van Hoof L, Claus P, Jones EA et al (2021) Back to the root: a large animal model of the Ross procedure. Ann Cardiothorac Surg 10(4):444–453. https://doi.org/10.21037/acs-2020-rp-21
doi: 10.21037/acs-2020-rp-21
Van Hoof L, Verbrugghe P, Jones EAV et al (2022) Understanding Pulmonary Autograft Remodeling After the Ross Procedure: Stick to the Facts. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2022.829120
doi: 10.3389/fcvm.2022.829120
Vander Linden K, Fehervary H, Maes L, et al (2022) An improved parameter fitting approach of a planar biaxial test including the experimental prestretch. J Mech Behav Biomed Mater 134:105389. https://doi.org/10.1016/j.jmbbm.2022.105389
Vanderveken E, Vastmans J, Verbelen T et al (2018) Reinforcing the pulmonary artery autograft in the aortic position with a textile mesh: a histological evaluation. Interact Cardiovasc Thorac Surg 27(4):566–573. https://doi.org/10.1093/icvts/ivy134
doi: 10.1093/icvts/ivy134
Vanderveken E, Vastmans J, Claus P et al (2020) Mechano-biological adaptation of the pulmonary artery exposed to systemic conditions. Sci Rep. https://doi.org/10.1038/s41598-020-59554-7
doi: 10.1038/s41598-020-59554-7
Vastmans J, Fehervary H, Verbrugghe P et al (2018) Biomechanical evaluation of a personalized external aortic root support applied in the Ross procedure. J Mech Behav Biomed Mater 78:164–174. https://doi.org/10.1016/j.jmbbm.2017.11.018
doi: 10.1016/j.jmbbm.2017.11.018
Vastmans J, Maes L, Peirlinck M et al (2022) Growth and remodeling in the pulmonary autograft: computational evaluation using kinematic growth models and constrained mixture theory. Int J Numer Methods Biomed Eng. https://doi.org/10.1002/cnm.3545
doi: 10.1002/cnm.3545
Yacoub MH, El-Hamamsy I, Sievers HH et al (2014) Under-use of the Ross operation - a lost opportunity. The Lancet 384(9943):559–560. https://doi.org/10.1016/S0140-6736(14)61090-4
doi: 10.1016/S0140-6736(14)61090-4

Auteurs

Lauranne Maes (L)

Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300 box 2419, 3001, Leuven, Belgium. lauranne.maes@kuleuven.be.

Thibault Vervenne (T)

Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300 box 2419, 3001, Leuven, Belgium.

Lucas Van Hoof (L)

Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, UZ Herestraat 49 box 276, 3000, Leuven, Belgium.

Elizabeth A V Jones (EAV)

Centre for Molecular and Vascular Biology, KU Leuven, UZ Herestraat 49 box 911, 3000, Leuven, Belgium.

Filip Rega (F)

Cardiac Surgery, Department of Cardiovascular Sciences, KU Leuven, UZ Herestraat 49 box 276, 3000, Leuven, Belgium.

Nele Famaey (N)

Biomechanics Section, Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300 box 2419, 3001, Leuven, Belgium.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH