Upfront Surgery versus Neoadjuvant Perioperative Chemotherapy for Resectable Colorectal Liver Metastases: A Machine-Learning Decision Tree to Identify the Best Potential Candidates under a Parenchyma-Sparing Policy.
colorectal liver metastases
liver surgery
machine-learning
neoadjuvant chemotherapy
upfront surgery
Journal
Cancers
ISSN: 2072-6694
Titre abrégé: Cancers (Basel)
Pays: Switzerland
ID NLM: 101526829
Informations de publication
Date de publication:
18 Jan 2023
18 Jan 2023
Historique:
received:
04
12
2022
revised:
13
01
2023
accepted:
17
01
2023
entrez:
11
2
2023
pubmed:
12
2
2023
medline:
12
2
2023
Statut:
epublish
Résumé
Addressing patients to neoadjuvant systemic chemotherapy followed by surgery rather than surgical resection upfront is controversial in the case of resectable colorectal -liver metastases (CLM). The aim of this study was to develop a machine-learning model to identify the best potential candidates for upfront surgery (UPS) versus neoadjuvant perioperative chemotherapy followed by surgery (NEOS). Patients at first liver resection for CLM were consecutively enrolled and collected into two groups, regardless of whether they had UPS or NEOS. An inverse -probability weighting (IPW) was performed to weight baseline differences; survival analyses; and risk predictions were estimated. A mortality risk model was built by Random-Forest (RF) to assess the best -potential treatment (BPT) for each patient. The characteristics of BPT-upfront and BPT-neoadjuvant candidates were automatically identified after developing a classification -and -regression tree (CART). A total of 448 patients were enrolled between 2008 and 2020: 95 UPS and 353 NEOS. After IPW, two balanced pseudo-populations were obtained: UPS = 432 and NEOS = 440. Neoadjuvant therapy did not significantly affect the risk of mortality (HR 1.44, 95% CI: 0.95-2.17,
Identifiants
pubmed: 36765570
pii: cancers15030613
doi: 10.3390/cancers15030613
pmc: PMC9913658
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
JAMA Oncol. 2017 Feb 01;3(2):211-219
pubmed: 27787550
Eur J Cancer. 2009 Jan;45(2):228-47
pubmed: 19097774
Ann Surg Oncol. 2016 Apr;23(4):1352-60
pubmed: 26714946
Lancet Oncol. 2013 Nov;14(12):1208-15
pubmed: 24120480
J Gastrointest Surg. 2017 Jan;21(1):187-189
pubmed: 27561637
JAMA. 2014 Jan 15;311(3):263-70
pubmed: 24430319
HPB (Oxford). 2017 Sep;19(9):775-784
pubmed: 28625391
Br J Surg. 2006 Jul;93(7):872-8
pubmed: 16671066
Surgery. 2009 Jul;146(1):60-71
pubmed: 19541011
Ann Oncol. 2023 Jan;34(1):10-32
pubmed: 36307056
Cancer Res. 2001 Jan 1;61(1):126-30
pubmed: 11196149
Ann Transl Med. 2016 Aug;4(15):275
pubmed: 27570769
Ann Surg. 2009 Aug;250(2):187-96
pubmed: 19638912
Eur J Surg Oncol. 2013 Aug;39(8):807-11
pubmed: 23726258
Ann Oncol. 2017 Aug 01;28(8):1713-1729
pubmed: 28407110
Lancet. 2008 Mar 22;371(9617):1007-16
pubmed: 18358928
Ann Surg. 2012 Feb;255(2):237-47
pubmed: 22041509
PLoS Med. 2007 Oct 16;4(10):e296
pubmed: 17941714
J Natl Cancer Inst. 2015 Feb 24;107(3):
pubmed: 25713148
Ann Surg. 1999 Sep;230(3):309-18; discussion 318-21
pubmed: 10493478
Eur J Cancer. 2016 Jul;62:132-7
pubmed: 27189322
Surg Oncol. 2020 Jun;33:193-195
pubmed: 31301934
J Clin Oncol. 2009 Aug 1;27(22):3677-83
pubmed: 19470929
Ann Surg Oncol. 2015;22(6):1908-14
pubmed: 25398280
Recent Results Cancer Res. 2014;203:243-52
pubmed: 25103010
World J Gastroenterol. 2014 Sep 21;20(35):12391-406
pubmed: 25253940
Front Oncol. 2022 Sep 05;12:973418
pubmed: 36132151
Br J Surg. 2021 Mar 12;108(2):109-111
pubmed: 33711137
JAMA. 2015 Sep 1;314(9):940-1
pubmed: 26325562
Cancers (Basel). 2022 Aug 16;14(16):
pubmed: 36010944