Regional Differences in Ca
atria
calcium
cardiac myocyte
excitation-contraction coupling
large animal model
t-tubule
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
25 Jan 2023
25 Jan 2023
Historique:
received:
28
11
2022
revised:
18
01
2023
accepted:
19
01
2023
entrez:
11
2
2023
pubmed:
12
2
2023
medline:
15
2
2023
Statut:
epublish
Résumé
Cardiac excitation-contraction coupling can be different between regions of the heart. Little is known at the atria level, specifically in different regions of the left atrium. This is important given the role of cardiac myocytes from the pulmonary vein sleeves, which are responsible for ectopic activity during atrial fibrillation. In this study, we present a new method to isolate atrial cardiac myocytes from four different regions of the left atrium of a large animal model, sheep, highly relevant to humans. Using collagenase/protease we obtained calcium-tolerant atrial cardiac myocytes from the epicardium, endocardium, free wall and pulmonary vein regions. Calcium transients were slower (time to peak and time to decay) in free wall and pulmonary vein myocytes compared to the epicardium and endocardium. This is associated with lower t-tubule density. Overall, these results suggest regional differences in calcium transient and t-tubule density across left atria, which may play a major role in the genesis of atrial fibrillation.
Identifiants
pubmed: 36768669
pii: ijms24032347
doi: 10.3390/ijms24032347
pmc: PMC9916916
pii:
doi:
Substances chimiques
Calcium
SY7Q814VUP
Calcium, Dietary
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Agence Nationale de la Recherche
ID : ANR-20-CE17-0010
Organisme : Agence Nationale de la Recherche
ID : ANR-12-BSV1-0029
Organisme : Agence Nationale de la Recherche
ID : ANR-10-IAHU-04
Références
PLoS One. 2016 Jun 09;11(6):e0156862
pubmed: 27281038
Am J Physiol Cell Physiol. 2015 Feb 1;308(3):C237-45
pubmed: 25394469
Circ Res. 2003 Jun 13;92(11):1182-92
pubmed: 12805236
J Clin Invest. 2016 Oct 3;126(10):3999-4015
pubmed: 27643434
Biochem Soc Trans. 2015 Jun;43(3):410-6
pubmed: 26009184
Circ Res. 2020 Jun 19;127(1):91-110
pubmed: 32716814
Circulation. 2014 Apr 8;129(14):1472-82
pubmed: 24463369
Biophys J. 2003 Nov;85(5):3388-96
pubmed: 14581240
Sci Rep. 2018 Feb 19;8(1):3244
pubmed: 29459735
Circ Res. 2017 Jun 9;120(12):1969-1993
pubmed: 28596175
Am J Physiol Heart Circ Physiol. 2022 Feb 1;322(2):H269-H284
pubmed: 34951544
Cardiovasc Res. 2015 Dec 1;108(3):387-98
pubmed: 26490742
Science. 1997 May 2;276(5313):800-6
pubmed: 9115206
Am J Physiol. 1983 Jul;245(1):C1-14
pubmed: 6346892
Circ Res. 2009 Oct 23;105(9):876-85
pubmed: 19762679
J Mol Cell Cardiol. 2017 Mar;104:31-42
pubmed: 28111173
J Am Coll Cardiol. 2006 Mar 21;47(6):1196-206
pubmed: 16545652
J Mol Cell Cardiol. 2012 May;52(5):988-97
pubmed: 22285480
Front Physiol. 2021 Sep 09;12:718404
pubmed: 34566684
Physiol Rev. 2011 Jan;91(1):265-325
pubmed: 21248168
J Physiol. 2013 Sep 1;591(17):4141-7
pubmed: 23652596
N Engl J Med. 1998 Sep 3;339(10):659-66
pubmed: 9725923
Nature. 2002 Jan 10;415(6868):198-205
pubmed: 11805843
Circ Heart Fail. 2009 Sep;2(5):482-9
pubmed: 19808379
Heart Rhythm. 2017 Feb;14(2):273-281
pubmed: 27670628