Accelerated Breeding for
CRISPR/Cas9
CenH3
doubled haploid
genome editing
sunflower
Journal
Plants (Basel, Switzerland)
ISSN: 2223-7747
Titre abrégé: Plants (Basel)
Pays: Switzerland
ID NLM: 101596181
Informations de publication
Date de publication:
20 Jan 2023
20 Jan 2023
Historique:
received:
21
12
2022
revised:
11
01
2023
accepted:
18
01
2023
entrez:
11
2
2023
pubmed:
12
2
2023
medline:
12
2
2023
Statut:
epublish
Résumé
The aim of any breeding process is to fully express the targeted, superior/desirable parent characteristic in the progeny. Hybrids are often used in this dynamic, and complex process for which homozygous parents-which may require up to eight generations of back crossing and selection-are required. Doubled haploid (DH) technologies can facilitate the production of true breeding lines faster and in a more efficient manner than the traditional back crossing and selection strategies. Sunflower is the third most important oilseed crop in the world and has no available double haploid induction procedure/technique that can be efficiently used in breeding programs. A reproducible and efficient doubled haploid induction method would be a valuable tool in accelerating the breeding of new elite sunflower varieties. Although several attempts have been made, the establishment of a sunflower doubled haploid induction protocol has remained a challenge owing recalcitrance to in vitro culture regeneration. Approaches for haploid development in other crops are often cultivar specific, difficult to reproduce, and rely on available tissue culture protocols-which on their own are also cultivar and/or species specific. As an out-crossing crop, the lack of a double haploid system limits sunflower breeding and associated improvement processes, thereby delaying new hybrid and trait developments. Significant molecular advances targeting genes, such as the
Identifiants
pubmed: 36771570
pii: plants12030485
doi: 10.3390/plants12030485
pmc: PMC9921946
pii:
doi:
Types de publication
Journal Article
Review
Langues
eng
Subventions
Organisme : National Research Foundation
ID : TP13082931631; 104901
Références
Nat Biotechnol. 2019 Mar;37(3):287-292
pubmed: 30833776
Front Plant Sci. 2016 Apr 12;7:357
pubmed: 27148276
Nat Plants. 2020 Jul;6(7):738-739
pubmed: 32601418
Sci China Life Sci. 2017 May;60(5):490-505
pubmed: 28527114
Genome Res. 2017 Mar;27(3):471-478
pubmed: 28223399
Nat Commun. 2014 Oct 31;5:5334
pubmed: 25358957
Viruses. 2021 Jan 19;13(1):
pubmed: 33478128
Virology. 1999 Mar 15;255(2):312-23
pubmed: 10069957
Plant J. 1992 Jul;2(4):549-57
pubmed: 1344890
Biotechnol Adv. 2015 Nov 1;33(6 Pt 1):812-29
pubmed: 26165969
Plant J. 2011 Oct;68(1):40-50
pubmed: 21635586
Front Plant Sci. 2016 Apr 19;7:506
pubmed: 27148329
Plant Cell Rep. 1995 Jan;15(1-2):125-8
pubmed: 24185669
N Biotechnol. 2022 Mar 25;67:1-11
pubmed: 34896246
Int J Mol Sci. 2019 Jul 09;20(13):
pubmed: 31323994
Biology (Basel). 2022 Feb 10;11(2):
pubmed: 35205141
Front Plant Sci. 2017 Jan 06;7:2019
pubmed: 28111587
Plants (Basel). 2021 Sep 14;10(9):
pubmed: 34579446
Plant Biotechnol J. 2020 Feb 24;:
pubmed: 32096293
Annu Rev Plant Biol. 2019 Apr 29;70:667-697
pubmed: 30835493
Plant Genome. 2022 Apr 25;:e20209
pubmed: 35470589
Plants (Basel). 2022 Oct 29;11(21):
pubmed: 36365372
Biomolecules. 2022 May 11;12(5):
pubmed: 35625616
Nature. 2017 Jun 1;546(7656):148-152
pubmed: 28538728
Curr Opin Plant Biol. 2021 Apr;60:101992
pubmed: 33450609
Nat Plants. 2020 Jul;6(7):736-737
pubmed: 32665647
Genome Biol. 2017 Feb 28;18(1):43
pubmed: 28245842
Theor Appl Genet. 2019 Mar;132(3):593-605
pubmed: 30569366
Mol Plant. 2015 Aug;8(8):1288-91
pubmed: 25749112
Sci Rep. 2015 Oct 09;5:14926
pubmed: 26450012
Front Plant Sci. 2017 Apr 11;8:539
pubmed: 28443125
Front Plant Sci. 2014 Jun 17;5:279
pubmed: 24987397
Biochimie. 2015 Oct;117:119-28
pubmed: 25868999
Sci Rep. 2021 May 10;11(1):9885
pubmed: 33972605
Plant J. 2017 May;90(4):819-833
pubmed: 28027431
Trends Plant Sci. 2000 Oct;5(10):446-51
pubmed: 11044722
Nature. 2010 Mar 25;464(7288):615-8
pubmed: 20336146
Genes (Basel). 2020 Jan 30;11(2):
pubmed: 32019223
Nat Methods. 2014 Aug;11(8):783-784
pubmed: 25075903
Nat Plants. 2019 Aug;5(8):778-794
pubmed: 31308503
Plant Methods. 2016 Jan 28;12:8
pubmed: 26823677
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11211-6
pubmed: 26294252
J Genet Genomics. 2016 Jan 20;43(1):37-43
pubmed: 26842992
Front Plant Sci. 2022 Jul 08;13:925467
pubmed: 35873991
Plant Methods. 2019 Apr 26;15:42
pubmed: 31057661
Plant Physiol. 2007 Dec;145(4):1251-63
pubmed: 17905866
Emerg Top Life Sci. 2017 Nov 10;1(2):231-240
pubmed: 33525760
Nat Biotechnol. 2020 Dec;38(12):1397-1401
pubmed: 33169035
Nat Plants. 2019 Jan;5(1):54-62
pubmed: 30598532
Science. 2012 Aug 17;337(6096):816-21
pubmed: 22745249
Cell Res. 2013 Oct;23(10):1229-32
pubmed: 23958582
J Cell Physiol. 2020 Feb;235(2):666-682
pubmed: 31317541
Annu Rev Plant Biol. 2016 Apr 29;67:421-38
pubmed: 26772657
Chromosoma. 2014 Aug;123(4):313-25
pubmed: 24763964
Curr Opin Biotechnol. 2007 Apr;18(2):134-41
pubmed: 17368018
Biotechnol Adv. 2022 Nov;60:108007
pubmed: 35732257
Front Plant Sci. 2021 Nov 26;12:767459
pubmed: 34899788
Sci Adv. 2021 Jan 20;7(4):
pubmed: 33523932
Plant Genome. 2022 Jun 14;:e20220
pubmed: 35698891
Curr Genet. 2005 Jul;48(1):1-17
pubmed: 15889258
Nature. 2017 Feb 2;542(7639):105-109
pubmed: 28114299
Plant Biotechnol J. 2010 May 1;8(4):377-424
pubmed: 20233334
Plant Cell Rep. 2016 Jul;35(7):1451-68
pubmed: 27137209
Nucleic Acids Res. 1989 Apr 11;17(7):2391-403
pubmed: 2541407
Plant Biotechnol J. 2015 Oct;13(8):1121-35
pubmed: 26073158
Plant Cell Rep. 1994 Dec;14(2-3):81-6
pubmed: 24192870
Front Plant Sci. 2015 Oct 31;6:912
pubmed: 26583020
Plant Biotechnol J. 2017 Nov;15(11):1361-1370
pubmed: 28796421
Methods Mol Biol. 2015;1224:47-55
pubmed: 25416248
PLoS Genet. 2015 Sep 09;11(9):e1005494
pubmed: 26352591