Sequencing strategies with ramucirumab and docetaxel following prior treatments for advanced non-small cell lung cancer: a multicenter retrospective cohort study.
Anti-angiogenic agent
Docetaxel
Immune checkpoint inhibitors
Non-small cell lung cancer
Ramucirumab
Journal
European journal of clinical pharmacology
ISSN: 1432-1041
Titre abrégé: Eur J Clin Pharmacol
Pays: Germany
ID NLM: 1256165
Informations de publication
Date de publication:
Apr 2023
Apr 2023
Historique:
received:
16
11
2022
accepted:
11
01
2023
medline:
28
3
2023
pubmed:
12
2
2023
entrez:
11
2
2023
Statut:
ppublish
Résumé
Ramucirumab (RAM) and docetaxel (DOC) are commonly used after first-line therapy for advanced non-small cell lung cancer (NSCLC). Therefore, we aimed to elucidate sequencing strategies of RAM and DOC following prior treatments, including immune checkpoint inhibitor (ICI), cytotoxic agent (CTx) alone, bevacizumab (BEV), and tyrosine kinase inhibitor (TKI). We recruited patients with NSCLC who received RAM and DOC and compared the groups with and without prior ICI, CTx alone, BEV, and TKI, respectively. By tumor response to such treatments, the patients were further classified into "complete response (CR) + partial response (PR)," "stable disease," and "progressive disease" groups, respectively. We compared RAM and DOC efficacy among these groups. In total, 237 patients were registered. In the group with prior ICI, the objective response rate and disease control rate were significantly higher than those without prior ICI (p = 0.012 and 0.028, respectively), and the median progression-free survival (PFS) was also significantly longer (p = 0.027). There were no significant differences in PFS between the groups with and without CTx alone, BEV, and TKI. Multivariate analysis revealed that prior ICI was an independent factor associated with better PFS. Furthermore, the prior ICI group with CR + PR significantly prolonged PFS compared to the group without prior ICI (p = 0.013). RAM and DOC may be preferably administered after ICI, rather than after CTx alone, BEV, or TKI, and, furthermore, enhanced if the prior ICI has a favorable tumor response.
Identifiants
pubmed: 36773042
doi: 10.1007/s00228-023-03452-0
pii: 10.1007/s00228-023-03452-0
doi:
Substances chimiques
Docetaxel
15H5577CQD
Bevacizumab
2S9ZZM9Q9V
Protein Kinase Inhibitors
0
Types de publication
Multicenter Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
503-511Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33. https://doi.org/10.3322/caac.21708
doi: 10.3322/caac.21708
pubmed: 35020204
Ortega-Franco A, Calvo V, Franco F et al (2020) Integrating immune checkpoint inhibitors and targeted therapies in the treatment of early stage non-small cell lung cancer: a narrative review. Transl Lung Cancer Res 9:2656–2673. https://doi.org/10.21037/tlcr-20-546
Gandhi L, Rodríguez-Abreu D, Gadgeel S et al (2018) Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N Engl J Med 378:2078–2092. https://doi.org/10.1056/nejmoa1801005
doi: 10.1056/nejmoa1801005
pubmed: 29658856
Socinski MA, Jotte RM, Cappuzzo F et al (2018) Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378:2288–2301. https://doi.org/10.1056/nejmoa1716948
doi: 10.1056/nejmoa1716948
pubmed: 29863955
Paz-Ares L, Luft A, Vicente D et al (2018) Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med 379:2040–2051. https://doi.org/10.1056/NEJMoa1810865
doi: 10.1056/NEJMoa1810865
pubmed: 30280635
Shepherd FA, Dancey J, Ramlau R et al (2000) Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J Clin Oncol 18:2095–2103. https://doi.org/10.1200/JCO.2000.18.10.2095
doi: 10.1200/JCO.2000.18.10.2095
pubmed: 10811675
Hanna N, Shepherd FA, Fossella FV et al (2004) Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol 22:1589–1597. https://doi.org/10.1200/JCO.2004.08.163
doi: 10.1200/JCO.2004.08.163
pubmed: 15117980
Kudoh S, Takeda K, Nakagawa K et al (2006) Phase III study of docetaxel compared with vinorelbine in elderly patients with advanced non-small-cell lung cancer: results of the West Japan Thoracic Oncology Group Trial (WJTOG 9904). J Clin Oncol 24:3657–3663. https://doi.org/10.1200/JCO.2006.06.1044
doi: 10.1200/JCO.2006.06.1044
pubmed: 16877734
Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2:1097–1105. https://doi.org/10.1177/1947601911423031
doi: 10.1177/1947601911423031
pubmed: 22866201
pmcid: 3411125
Garon EB, Ciuleanu TE, Arrieta O et al (2014) Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet 384:665–673. https://doi.org/10.1016/S0140-6736(14)60845-X
doi: 10.1016/S0140-6736(14)60845-X
pubmed: 24933332
Matsumoto K, Tamiya A, Matsuda Y et al (2021) Impact of docetaxel plus ramucirumab on metastatic site in previously treated patients with non-small cell lung cancer: a multicenter retrospective study. Transl Lung Cancer Res 10:1642–1652. https://doi.org/10.21037/tlcr-20-1263
Matsumoto K, Tamiya A, Inagaki Y et al (2022) Efficacy and safety of ramucirumab plus docetaxel in older patients with advanced non-small cell lung cancer: a multicenter retrospective cohort study. J Geriatr Oncol 13:207–213. https://doi.org/10.1016/j.jgo.2021.09.004
doi: 10.1016/j.jgo.2021.09.004
pubmed: 34602370
Harada D, Takata K, Mori S et al (2019) Previous immune checkpoint inhibitor treatment to increase the efficacy of docetaxel and ramucirumab combination chemotherapy. Anticancer Res 39:4987–4993. https://doi.org/10.21873/anticanres.13688
Tozuka T, Kitazono S, Sakamoto H et al (2020) Addition of ramucirumab enhances docetaxel efficacy in patients who had received anti-PD-1/PD-L1 treatment. Lung Cancer 144:71–75. https://doi.org/10.1016/j.lungcan.2020.04.021
doi: 10.1016/j.lungcan.2020.04.021
pubmed: 32387683
Kawachi H, Tamiya M, Matsumoto K et al (2022) Efficacy and safety of ramucirumab and docetaxel in previously treated patients with squamous cell lung cancer: a multicenter retrospective cohort study. Invest New Drugs 40:634–642. https://doi.org/10.1007/s10637-022-01214-w
doi: 10.1007/s10637-022-01214-w
pubmed: 35024985
Lee WS, Yang H, Chon HJ, Kim C (2020) Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med 52:1475–1485. https://doi.org/10.1038/s12276-020-00500-y
doi: 10.1038/s12276-020-00500-y
pubmed: 32913278
pmcid: 8080646
Matsumoto K, Shiroyama T, Kuge T et al (2021) Impact of treatment timing and sequence of immune checkpoint inhibitors and anti-angiogenic agents for advanced non-small cell lung cancer: a systematic review and meta-analysis. Lung Cancer 162:175–184. https://doi.org/10.1016/j.lungcan.2021.11.008
doi: 10.1016/j.lungcan.2021.11.008
pubmed: 34823108
Tseng JS, Yang TY, Chen KC et al (2014) Prior EGFR tyrosine-kinase inhibitor therapy did not influence the efficacy of subsequent pemetrexed plus platinum in advanced chemonaïve patients with EGFR-mutant lung adenocarcinoma. Onco Targets Ther 7:799–805. https://doi.org/10.2147/OTT.S62639
doi: 10.2147/OTT.S62639
pubmed: 24920920
pmcid: 4043805
Reck M, Paz-Ares L, Bidoli P et al (2017) Outcomes in patients with aggressive or refractory disease from REVEL: a randomized phase III study of docetaxel with ramucirumab or placebo for second-line treatment of stage IV non-small-cell lung cancer. Lung Cancer 112:181–187. https://doi.org/10.1016/j.lungcan.2017.07.038
doi: 10.1016/j.lungcan.2017.07.038
pubmed: 29191593
Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247. https://doi.org/10.1016/j.ejca.2008.10.026
doi: 10.1016/j.ejca.2008.10.026
pubmed: 19097774
Bhome R, Bullock MD, Al Saihati HA et al (2015) A top-down view of the tumor microenvironment: structure, cells and signaling. Front Cell Dev Biol 3:33. https://doi.org/10.3389/fcell.2015.00033
doi: 10.3389/fcell.2015.00033
pubmed: 26075202
pmcid: 4448519
Nishikawa H, Sakaguchi S (2014) Regulatory T cells in cancer immunotherapy. Curr Opin Immunol 27:1–7. https://doi.org/10.1016/j.coi.2013.12.005
doi: 10.1016/j.coi.2013.12.005
pubmed: 24413387
Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220. https://doi.org/10.1016/j.it.2016.01.004
doi: 10.1016/j.it.2016.01.004
pubmed: 26858199
pmcid: 4775398
Pan Y, Yu Y, Wang X, Zhang T (2020) Tumor-associated macrophages in tumor immunity. Front Immunol 11:583084. https://doi.org/10.3389/fimmu.2020.583084
Ma Y, Shurin GV, Peiyuan Z, Shurin MR (2013) Dendritic cells in the cancer microenvironment. J Cancer 4:36–44. https://doi.org/10.7150/jca.5046
doi: 10.7150/jca.5046
pubmed: 23386903
Terme M, Pernot S, Marcheteau E et al (2013) VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res 73:539–549. https://doi.org/10.1158/0008-5472.CAN-12-2325
doi: 10.1158/0008-5472.CAN-12-2325
pubmed: 23108136
Gabrilovich D, Ishida T, Oyama T et al (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92:4150–4166. https://doi.org/10.1182/blood.v92.11.4150
doi: 10.1182/blood.v92.11.4150
pubmed: 9834220
Huinen ZR, Huijbers EJM, van Beijnum JR et al (2021) Anti-angiogenic agents - overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat Rev Clin Oncol 18:527–540. https://doi.org/10.1038/s41571-021-00496-y
doi: 10.1038/s41571-021-00496-y
pubmed: 33833434
Voron T, Colussi O, Marcheteau E et al (2015) VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 212:139–148. https://doi.org/10.1084/jem.20140559
doi: 10.1084/jem.20140559
pubmed: 25601652
pmcid: 4322048
Osa A, Uenami T, Koyama S et al (2018) Clinical implications of monitoring nivolumab immunokinetics in non–small cell lung cancer patients. JCI Insight 3. https://doi.org/10.1172/jci.insight.59125
Herbst RS, Garon EB, Kim DW et al (2020) Long-term outcomes and retreatment among patients with previously treated, programmed death-ligand 1-positive, advanced non-small-cell lung cancer in the KEYNOTE-010 study. J Clin Oncol 38:1580–1590. https://doi.org/10.1200/JCO.19.02446
doi: 10.1200/JCO.19.02446
pubmed: 32078391
Lee J, Koh J, Kim HK et al (2022) Bevacizumab plus atezolizumab after progression on atezolizumab monotherapy in pretreated patients with NSCLC: an open-label, two-stage, phase 2 trial. J Thorac Oncol 17:900–908. https://doi.org/10.1016/j.jtho.2022.04.001
doi: 10.1016/j.jtho.2022.04.001
pubmed: 35427805
Reckamp KL, Redman MW, Dragnev KH et al (2022) Phase II randomized study of ramucirumab and pembrolizumab versus standard of care in advanced non-small-cell lung cancer previously treated with immunotherapy-lung-MAP S1800A. J Clin Oncol 40:2295–2306. https://doi.org/10.1200/JCO.22.00912
doi: 10.1200/JCO.22.00912
pubmed: 35658002
pmcid: 9287284
Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571. https://doi.org/10.1038/nature13954
doi: 10.1038/nature13954
pubmed: 25428505
pmcid: 4246418
Henning AN, Roychoudhuri R, Restifo NP (2018) Epigenetic control of CD8+ T cell differentiation. Nat Rev Immunol 18:340–356. https://doi.org/10.1038/nri.2017.146
doi: 10.1038/nri.2017.146
pubmed: 29379213
pmcid: 6327307