Models and molecular mechanisms for trade-offs in the context of metabolism.

constraints fluxes metabolic networks trade-offs

Journal

Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478

Informations de publication

Date de publication:
11 Feb 2023
Historique:
revised: 19 01 2023
received: 10 08 2022
accepted: 07 02 2023
pubmed: 12 2 2023
medline: 12 2 2023
entrez: 11 2 2023
Statut: aheadofprint

Résumé

Accumulating evidence for trade-offs involving metabolic traits has demonstrated their importance in the evolution of organisms. Metabolic models with different levels of complexity have already been considered when investigating mechanisms that explain various metabolic trade-offs. Here we provide a systematic review of modelling approaches that have been used to study and explain trade-offs between: (i) the kinetic properties of individual enzymes, (ii) rates of metabolic reactions, (iii) the rate and yield of metabolic pathways and networks, (iv) different metabolic objectives in single organisms and in metabolic communities, and (v) metabolic concentrations. In providing insights into the mechanisms underlying these five types of metabolic trade-offs obtained from constraint-based metabolic modelling, we emphasize the relationship of metabolic trade-offs to the classical black box Y-model that provides a conceptual explanation for resource acquisition-allocation trade-offs. In addition, we identify several pressing concerns and offer a perspective for future research in the identification and manipulation of metabolic trade-offs by relying on the toolbox provided by constraint-based metabolic modelling for single organisms and microbial communities.

Identifiants

pubmed: 36773330
doi: 10.1111/mec.16879
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : NI 1472/4-1

Informations de copyright

© 2023 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.

Références

Adadi, R., Volkmer, B., Milo, R., Heinemann, M., & Shlomi, T. (2012). Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters. PLoS Computational Biology, 8(7), e1002575. https://doi.org/10.1371/JOURNAL.PCBI.1002575
Agrawal, A. A., Conner, J. K., & Sergio, R. (2010). Evolution since Darwin (pp. 243-268). Oxford University Press.
Angilletta, M. J., Wilson, R. S., Navas, C. A., & James, R. S. (2003). Tradeoffs and the evolution of thermal reaction norms. Trends in Ecology & Evolution, 18(5), 234-240. https://doi.org/10.1016/S0169-5347(03)00087-9
Antoniewicz, M. R. (2015). Methods and advances in metabolic flux analysis: A mini-review. Journal of Industrial Microbiology & Biotechnology, 42(3), 317-325. https://doi.org/10.1007/S10295-015-1585-X
Basan, M., Honda, T., Christodoulou, D., Manuel Hörl, Y., Chang, F., Leoncini, E., Mukherjee, A., Okano, H., Taylor, B. R., Silverman, J. M., Sanchez, C., Williamson, J. R., Paulsson, J., Hwa, T., & Sauer, U. (2020). A universal trade-off between growth and lag in fluctuating environments. Nature, 584(7821), 470-474. https://doi.org/10.1038/S41586-020-2505-4
Basan, M., Hui, S., Okano, H., Zhang, Z., Yang, S., Williamson, J. R., & Hwa, T. (2015). Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature, 528(7580), 99-104. https://doi.org/10.1038/nature15765
Basler, G., Fernie, A. R., & Nikoloski, Z. (2018). Advances in metabolic flux analysis toward genome-scale profiling of higher organisms. Bioscience Reports, 38(6), BSR20170224. https://doi.org/10.1042/BSR20170224
Beg, Q. K., Vazquez, A., Ernst, J., de Menezes, M. A., Bar-Joseph, Z., Barabási, A. L., & Oltvai, Z. N. (2007). Intracellular crowding defines the mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proceedings of the National Academy of Sciences of the United States of America, 104(31), 12663-12668. https://doi.org/10.1073/PNAS.0609845104/SUPPL_FILE/09845DATASET5.XLS
Bekiaris, P. S., & Klamt, S. (2020). Automatic construction of metabolic models with enzyme constraints. BMC Bioinformatics, 21(1), 1-13. https://doi.org/10.1186/S12859-019-3329-9/TABLES/2
Bouvier, J. W., Emms, D. M., Rhodes, T., Bolton, J. S., Brasnett, A., Eddershaw, A., Nielsen, J. R., Unitt, A., Whitney, S. M., & Kelly, S. (2021). Rubisco adaptation is more limited by phylogenetic constraint than by catalytic trade-off. Molecular Biology and Evolution, 38(7), 2880-2896. https://doi.org/10.1093/MOLBEV/MSAB079
Budinich, M., Bourdon, J., Larhlimi, A., & Eveillard, D. (2017). A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems. PLoS One, 12(2), e0171744. https://doi.org/10.1371/JOURNAL.PONE.0171744
Byrne, D., Dumitriu, A., & Segrè, D. (2012). Comparative multi-goal tradeoffs in systems engineering of microbial metabolism. BMC Systems Biology, 6(1), 1-19. https://doi.org/10.1186/1752-0509-6-127/FIGURES/6
de Becker, K., Totis, N., Bernaerts, K., & Waldherr, S. (2022). Using resource constraints derived from genomic and proteomic data in metabolic network models. Current Opinion in Systems Biology, 29, 100400. https://doi.org/10.1016/J.COISB.2021.100400
de Deken, R. H. (1966). The Crabtree effect: A regulatory system in yeast. Journal of General Microbiology, 44(2), 149-156. https://doi.org/10.1099/00221287-44-2-149
Diener, C., Gibbons, S. M., & Resendis-Antonio, O. (2020). MICOM: Metagenome-scale modeling to infer metabolic interactions in the gut microbiota. MSystems, 5(1), e00606-19. https://doi.org/10.1128/MSYSTEMS.00606-19/SUPPL_FILE/REVIEWER-COMMENTS.PDF
Dingemanse, N. J., & Dochtermann, N. A. (2013). Quantifying individual variation in behaviour: Mixed-effect modelling approaches. Journal of Animal Ecology, 82(1), 39-54. https://doi.org/10.1111/1365-2656.12013
Domenzain, I., Sánchez, B., Anton, M., Kerkhoven, E. J., Millán-Oropeza, A., Henry, C., Siewers, V., Morrissey, J. P., Sonnenschein, N., & Nielsen, J. (2022). Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0. Nature Communications, 13, 1-13. https://doi.org/10.1038/s41467-022-31421-1
Ekkers, D. M., Tusso, S., Moreno-Gamez, S., Rillo, M. C., Kuipers, O. P., Sander Van Doorn, G., & Barlow, M. (2022). Trade-offs predicted by metabolic network structure give rise to evolutionary specialization and phenotypic diversification. Molecular Biology and Evolution, 39(6), msac124. https://doi.org/10.1093/MOLBEV/MSAC124
Famili, I., & Palsson, B. O. (2003). The convex basis of the left null space of the stoichiometric matrix leads to the definition of metabolically meaningful pools. Biophysical Journal, 85(1), 16-26. https://doi.org/10.1016/S0006-3495(03)74450-6
Feist, A. M., & Palsson, B. O. (2010). The biomass objective function. Current Opinion in Microbiology, 13(3), 344-349. https://doi.org/10.1016/J.MIB.2010.03.003
Flamholz, A. I., Prywes, N., Moran, U., Davidi, D., Bar-On, Y. M., Oltrogge, L. M., Alves, R., Savage, D., & Milo, R. (2019). Revisiting trade-offs between Rubisco kinetic parameters. Biochemistry, 58(31), 3365-3376. https://doi.org/10.1021/ACS.BIOCHEM.9B00237/SUPPL_FILE/BI9B00237_SI_005.XLSX
Goelzer, A., Fromion, V., & Scorletti, G. (2011). Cell design in bacteria as a convex optimization problem. Automatica, 47(6), 1210-1218. https://doi.org/10.1016/J.AUTOMATICA.2011.02.038
Hall, E. K., Bernhardt, E. S., Bier, R. L., Bradford, M. A., Boot, C. M., Cotner, J. B., del Giorgio, P. A., Evans, S. E., Graham, E. B., Jones, S. E., Lennon, J. T., Locey, K. J., Nemergut, D., Osborne, B. B., Rocca, J. D., Schimel, J. P., Waldrop, M. P., & Wallenstein, M. D. (2018). Understanding how microbiomes influence the systems they inhabit. Nature Microbiology, 3(9), 977-982. https://doi.org/10.1038/s41564-018-0201-z
Haraldsdóttir, H. S., Cousins, B., Thiele, I., Fleming, R. M. T., & Vempala, S. (2017). CHRR: Coordinate hit-and-run with rounding for uniform sampling of constraint-based models. Bioinformatics, 33(11), 1741-1743. https://doi.org/10.1093/bioinformatics/btx052
Haraldsdóttir, H. S., & Fleming, R. M. T. (2016). Identification of conserved moieties in metabolic networks by graph theoretical analysis of atom transition networks. PLoS Computational Biology, 12(11), e1004999. https://doi.org/10.1371/JOURNAL.PCBI.1004999
Hashemi, S., Razaghi-Moghadam, Z., Laitinen, R. A. E., & Nikoloski, Z. (2022). Relative flux trade-offs and optimization of metabolic network functionalities. Computational and Structural Biotechnology Journal., 20, 3963-3971. https://doi.org/10.1016/J.CSBJ.2022.07.038
Hashemi, S., Razaghi-Moghadam, Z., & Nikoloski, Z. (2021). Identification of flux trade-offs in metabolic networks. Scientific Reports, 11(1), 23776. https://doi.org/10.1038/S41598-021-03224-9
Herbert Grace Crabtree, B. Y. (1929). Observations on the carbohydrate metabolism of Tumours. Biochemical Journal, 23(3), 536-545. https://doi.org/10.1042/BJ0230536
Hui, S., Silverman, J. M., Chen, S. S., Erickson, D. W., Basan, M., Wang, J., Hwa, T., & Williamson, J. R. (2015). Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Molecular Systems Biology, 11(2), 784. https://doi.org/10.15252/MSB.20145697
Huß, S., Judd, R. S., Koper, K., Maeda, H. A., & Nikoloski, Z. (2022). An automated workflow that generates atom mappings for large-scale metabolic models and its application to Arabidopsis Thaliana. The Plant Journal, 111, 1486-1500. https://doi.org/10.1111/TPJ.15903
Kaltenbach, M., Emond, S., Hollfelder, F., & Tokuriki, N. (2016). Functional trade-offs in promiscuous enzymes cannot Be explained by intrinsic mutational robustness of the native activity. PLoS Genetics, 12(10), e1006305. https://doi.org/10.1371/JOURNAL.PGEN.1006305
Karp, R. L., Millá, M. P. R., Dasgupta, T., Dickenstein, A., & Gunawardena, J. (2012). Complex-linear invariants of biochemical networks. Journal of Theoretical Biology, 1-9, 130-138. https://doi.org/10.1016/j.jtbi.2012.07.004
Kerkhoven, E. J. (2022). Advances in constraint-based models: Methods for improved predictive power based on resource allocation constraints. Current Opinion in Microbiology, 68, 102168. https://doi.org/10.1016/J.MIB.2022.102168
Kneitel, J. M., & Chase, J. M. (2004). Trade-offs in community ecology: Linking spatial scales and species coexistence. Ecology Letters, 7(1), 69-80. https://doi.org/10.1046/J.1461-0248.2003.00551.X
Küken, A., Langary, D., & Nikoloski, Z. (2022). The hidden simplicity of metabolic networks is revealed by multireaction dependencies. Science Advances, 8(13), 6962. https://doi.org/10.1126/SCIADV.ABL6962/SUPPL_FILE/SCIADV.ABL6962_TABLES_S1_TO_S6.ZIP
Küken, A., & Nikoloski, Z. (2019). Computational approaches to design and test plant synthetic metabolic pathways. Plant Physiology, 179(3), 894-906. https://doi.org/10.1104/PP.18.01273
Küken, A., Wendering, P., Langary, D., & Nikoloski, Z. (2021). A structural property for reduction of biochemical networks. Scientific Reports, 11(1), 17415. https://doi.org/10.1038/S41598-021-96835-1
Laitinen, R. A. E., & Nikoloski, Z. (2019). Genetic basis of plasticity in plants. Journal of Experimental Botany, 70(3), 739-745. https://doi.org/10.1093/JXB/ERY404
Laitinen, R. A. E., & Nikoloski, Z. (2022). Genetic underpinnings of trade-offs in plants. Molecular Ecology. https://doi.org/10.22541/au.166019947.72509762/v1
Larsen, P., Hamada, Y., & Gilbert, J. (2012). Modeling microbial communities: Current, developing, and future Technologies for Predicting Microbial Community Interaction. Journal of Biotechnology, 160(1-2), 17-24. https://doi.org/10.1016/J.JBIOTEC.2012.03.009
Leveson-Gower, R. B., Mayer, C., & Roelfes, G. (2019). The importance of catalytic promiscuity for enzyme design and evolution. Nature Reviews Chemistry, 3(12), 687-705.
Lipson, D. A. (2015). The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Frontiers in Microbiology, 6(JUN), 615. https://doi.org/10.3389/FMICB.2015.00615/BIBTEX
Mahadevan, R., & Schilling, C. H. (2003). The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metabolic Engineering, 5(4), 264-276. https://doi.org/10.1016/J.YMBEN.2003.09.002
Mahadevan, R., Edwards, J. S., & Doyle, F. J. (2002). Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophysical Journal, 83(3), 1331-1340. https://doi.org/10.1016/S0006-3495(02)73903-9
Malik, A. A., Martiny, J. B. H., Brodie, E. L., Martiny, A. C., Treseder, K. K., & Allison, S. D. (2019). Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME Journal, 14(1), 1-9. https://doi.org/10.1038/s41396-019-0510-0
Maranas, C. D., & Zomorrodi, A. R. (2016). Optimization Methods in Metabolic Networks. Wiley. https://doi.org/10.1002/9781119188902
Mauro, A. A., & Ghalambor, C. K. (2020). Trade-offs, pleiotropy, and shared molecular pathways: A unified view of constraints on adaptation. Integrative and Comparative Biology, 60(2), 332-347. https://doi.org/10.1093/ICB/ICAA056
McMurry, J. E., & Fay, R. C. (2015). Chemistry (7th ed.). Pearson.
Miller, S. R. (2017). An appraisal of the enzyme stability-activity trade-off. Evolution; International Journal of Organic Evolution, 71(7), 1876-1887. https://doi.org/10.1111/EVO.13275
Molenaar, D., van Berlo, R., de Ridder, D., & Teusink, B. (2009). Shifts in growth strategies reflect tradeoffs in cellular economics. Molecular Systems Biology, 5(1), 323. https://doi.org/10.1038/msb.2009.82
Mori, M., Hwa, T., Martin, O. C., de Martino, A., & Marinari, E. (2016). Constrained allocation flux balance analysis. PLoS Computational Biology, 12(6), e1004913. https://doi.org/10.1371/JOURNAL.PCBI.1004913
Mori, M., Marinari, E., & de Martino, A. (2019). A yield-cost tradeoff governs Escherichia coli's decision between fermentation and respiration in carbon-limited growth. Npj Systems Biology and Applications, 5(1), 1-9. https://doi.org/10.1038/s41540-019-0093-4
Mulgund, A. (2022). Increasing lipid accumulation in microalgae through environmental manipulation, metabolic and genetic engineering: A review in the energy NEXUS framework. Energy Nexus, 5, 100054. https://doi.org/10.1016/J.NEXUS.2022.100054
Nagrath, D., Avila-Elchiver, M., Berthiaume, F., Tilles, A. W., Messac, A., & Yarmush, M. L. (2010). Soft constraints-based multiobjective framework for flux balance analysis. Metabolic Engineering, 12(5), 429-445. https://doi.org/10.1016/J.YMBEN.2010.05.003
Nagrath, D., Avila-Elchiver, M., Berthiaume, F., Tilles, A. W., Messac, A., & Yarmush, M. L. (2007). Integrated energy and flux balance based multiobjective framework for large-scale metabolic networks. Annals of Biomedical Engineering, 35(6), 863-885. https://doi.org/10.1007/S10439-007-9283-0/TABLES/7
Nakamura, A., Watanabe, H., Ishida, T., Uchihashi, T., Wada, M., Ando, T., Igarashi, K., & Samejima, M. (2014). Trade-off between processivity and hydrolytic velocity of Cellobiohydrolases at the surface of crystalline cellulose. Journal of the American Chemical Society, 136(12), 4584-4592. https://doi.org/10.1021/JA4119994/SUPPL_FILE/JA4119994_SI_004.AVI
Navid, A., Jiao, Y., Wong, S. E., & Pett-Ridge, J. (2019). System-level analysis of metabolic trade-offs during anaerobic photoheterotrophic growth in Rhodopseudomonas Palustris. BMC Bioinformatics, 20(1), 233. https://doi.org/10.1186/S12859-019-2844-Z
Nilsson, A., & Nielsen, J. (2016). Metabolic trade-offs in yeast are caused by F1F0-ATP synthase. Scientific Reports, 6, 22264. https://doi.org/10.1038/SREP22264
Novak, M., Pfeiffer, T., Lenski, R. E., Sauer, U., & Bonhoeffer, S. (2006). Experimental tests for an evolutionary trade-off between growth rate and yield in E. Coli. The American Naturalist, 168(2), 242-251. https://doi.org/10.1086/506527
O'Brien, E. J., Monk, J. M., & Palsson, B. O. (2015). Using genome-scale models to predict biological capabilities. Cell, 161(5), 971-987. https://doi.org/10.1016/J.CELL.2015.05.019/ATTACHMENT/6013B6EC-BF60-4B64-8871-4E10B6BE69D1/MMC2.XLSX
Oh, Y. G., Lee, D. Y., Lee, S. Y., & Park, S. (2009). Multiobjective flux balancing using the NISE method for metabolic network analysis. Biotechnology Progress, 25(4), 999-1008. https://doi.org/10.1002/BTPR.193
Orth, J. D., Thiele, I., Palsson, B. Ø., & Author, N. B. (2010). What is flux balance analysis? Nature Biotechnology, 28(3), 245-248. https://doi.org/10.1038/nbt.1614
Palsson, B. O., & Yurkovich, J. T. (2022). Is the Kinetome conserved? Molecular Systems Biology, 18(2), e10782. https://doi.org/10.15252/MSB.202110782
Pfeiffer, T., Schuster, S., & Bonhoeffer, S. (2001). Cooperation and competition in the evolution of ATP-producing pathways. Science, 292(5516), 504-507. https://doi.org/10.1126/science.1058079
Reznick, D. (1985). Costs of reproduction: An evaluation of the empirical evidence. Oikos, 44(2), 257. https://doi.org/10.2307/3544698
Roff, D. A., & Fairbairn, D. J. (2007). The evolution of trade-offs: Where are we? Journal of Evolutionary Biology, 20(2), 433-447.
Sajitz-Hermstein, M., & Nikoloski, Z. (2016). Multi-objective shadow prices point at Principles of metabolic regulation. Biosystems, 146, 91-101. https://doi.org/10.1016/J.BIOSYSTEMS.2016.04.005
Sánchez, B. J., Zhang, C., Nilsson, A., Lahtvee, P.-J., Kerkhoven, E. J., & Nielsen, J. (2017). Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Molecular Systems Biology, 13(8), 935. https://doi.org/10.15252/MSB.20167411
Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., & Sauer, U. (2012). Multidimensional optimality of microbial metabolism. Science, 336(6081), 601-604. https://doi.org/10.1126/science.1216882
Schuster, S., & Höfer, T. (1991). Determining all extreme semi-positive conservation relations in chemical reaction systems: A test criterion for conservativity. Journal of the Chemical Society, Faraday Transactions, 87(16), 2561-2566. https://doi.org/10.1039/FT9918702561
Sendín, J. O. H., Exler, O., & Banga, J. R. (2010). Multi-objective mixed integer strategy for the optimisation of biological networks. IET Systems Biology, 4(3), 236-248. https://doi.org/10.1049/IET-SYB.2009.0045
Shinar, G., & Feinberg, M. (2010). Structural sources of robustness in biochemical reaction networks. Science, 327(5971), 1389-1391. https://doi.org/10.1126/SCIENCE.1183372/SUPPL_FILE/SHINAR.SOM.PDF
Shoval, O., Sheftel, H., Shinar, G., Hart, Y., Ramote, O., Mayo, A., Dekel, E., Kavanagh, K., & Alon, U. (2012). Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space. Science, 336(6085), 1157-1160. https://doi.org/10.1126/science.1217405
Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L., & Richter, A. (2013). “Carbon use efficiency of microbial communities: Stoichiometry”, methodology and modelling. Ecology Letters, 16(7), 930-939. https://doi.org/10.1111/ELE.12113
Stearns, S. C. (1989). Trade-offs in life-history evolution. Functional Ecology, 3(3), 259. https://doi.org/10.2307/2389364
Stitt, M., Sulpice, R., & Keurentjes, J. (2010). Metabolic networks: How to identify key components in the regulation of metabolism and growth. Plant Physiology, 152(2), 428-444. https://doi.org/10.1104/PP.109.150821
Tawfik, D. S. (2014). Accuracy-rate tradeoffs: How do enzymes meet demands of selectivity and catalytic efficiency? Current Opinion in Chemical Biology, 21, 73-80. https://doi.org/10.1016/J.CBPA.2014.05.008
Tcherkez, G. G. B., Farquhar, G. D., & John Andrews, T. (2006). Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may Be nearly perfectly optimized. Proceedings of the National Academy of Sciences of the United States of America, 103(19), 7246-7251. https://doi.org/10.1073/PNAS.0600605103
van Noordwijk, A. J., & de Jong, G. (1986). Acquisition and allocation of resources: Their influence on variation in life history. Source: The American Naturalist, 128(1), 137-142.
Waldherr, S., Oyarzún, D. A., & Bockmayr, A. (2015). Dynamic optimization of metabolic networks coupled with gene expression. Journal of Theoretical Biology, 365, 469-485. https://doi.org/10.1016/J.JTBI.2014.10.035
Wendering, P., & Nikoloski, Z. (2022). Genome-scale modeling specifies the metabolic capabilities of Rhizophagus Irregularis. MSystems, 7(1), e0121621. https://doi.org/10.1128/MSYSTEMS.01216-21/SUPPL_FILE/MSYSTEMS.01216-21-SF006.TIF
Wortel, M. T., Noor, E., Ferris, M., Bruggeman, F. J., & Liebermeister, W. (2018). Metabolic enzyme cost Explains variable trade-offs between microbial growth rate and yield. PLoS Computational Biology, 14(2), e1006010. https://doi.org/10.1371/JOURNAL.PCBI.1006010
Zomorrodi, A. R., Islam, M. M., & Maranas, C. D. (2014). D-OptCom: Dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synthetic Biology, 3(4), 247-257. https://doi.org/10.1021/SB4001307/SUPPL_FILE/SB4001307_SI_002.PDF
Zomorrodi, A. R., & Maranas, C. D. (2012). OptCom: A multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Computational Biology, 8(2), e1002363. https://doi.org/10.1371/JOURNAL.PCBI.1002363

Auteurs

Seirana Hashemi (S)

Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.

Roosa Laitinen (R)

Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.

Zoran Nikoloski (Z)

Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.

Classifications MeSH