Combining multiple cell death pathway-related risk scores to develop neuroblastoma cell death signature.

Multiple cell death pathway Neuroblastoma Prognosis Progression Signature

Journal

Journal of cancer research and clinical oncology
ISSN: 1432-1335
Titre abrégé: J Cancer Res Clin Oncol
Pays: Germany
ID NLM: 7902060

Informations de publication

Date de publication:
Aug 2023
Historique:
received: 28 11 2022
accepted: 27 01 2023
medline: 24 7 2023
pubmed: 14 2 2023
entrez: 13 2 2023
Statut: ppublish

Résumé

Cell death plays an important role in tumourigenesis and progression; nevertheless, the clinical significance of cell death-related genes in neuroblastoma remains incompletely understood. We separately constructed the corresponding risk scores for each of the eight cell death pathways separately and assessed their predictive performance. Through Cox regression analysis, these eight risk scores were integrated to obtain final cell death risk scores (CDRS). We evaluated the predictive performance of CDRS in multiple datasets and compared its accuracy with the clinical characteristics of patients and some existing prognostic models for neuroblastoma. We then explored the differences in immune infiltration between the high and low CDRS groups, and the significance of CDRS on EFS and disease progression. All eight risk scores have high predictive accuracy, with the Immunogenic-RS being the most accurate and the cuproptosis-RS the least accurate. Model genes are mainly enriched in a variety of cancer-related pathways and are closely related to the clinical characteristics. CDRS showed superior and robust predictive performance in multiple datasets and was more accurate than the clinical characteristics of patients and some existing prognostic models for neuroblastoma. High CDRS group featured distinct immune cold tumor profiles and may have poorer immune checkpoint inhibitor efficacy. CDRS had significance in predicting EFS and disease progression. We integrated risk scores associated with multiple cell death pathways to develop a high-performing and robust neuroblastoma signature. CDRS was a promising tool that may help with risk assessment and prediction of overall prognosis, and thus improve clinical outcomes.

Identifiants

pubmed: 36781504
doi: 10.1007/s00432-023-04605-5
pii: 10.1007/s00432-023-04605-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6513-6526

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Andrews LP, Marciscano AE, Drake CG, Vignali DA (2017) LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev 276(1):80–96. https://doi.org/10.1111/imr.12519
doi: 10.1111/imr.12519 pubmed: 28258692 pmcid: 5338468
Bansal D, Totadri S, Chinnaswamy G, Agarwala S, Vora T, Arora B, Prasad M, Kapoor G, Radhakrishnan V, Laskar S, Kaur T, Rath GK, Bakhshi S (2017) Management of neuroblastoma: ICMR consensus document. Indian J Pediatr 84(6):446–455. https://doi.org/10.1007/s12098-017-2298-0
doi: 10.1007/s12098-017-2298-0 pubmed: 28367616
Blanche P, Dartigues JF, Jacqmin-Gadda H (2013) Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat Med 32(30):5381–5397. https://doi.org/10.1002/sim.5958
doi: 10.1002/sim.5958 pubmed: 24027076
Chen X, Zeh HJ, Kang R, Kroemer G, Tang D (2021) Cell death in pancreatic cancer: from pathogenesis to therapy. Nat Rev Gastroenterol Hepatol 18(11):804–823. https://doi.org/10.1038/s41575-021-00486-6
doi: 10.1038/s41575-021-00486-6 pubmed: 34331036
Darvin P, Toor SM, Sasidharan Nair V, Elkord E (2018) Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 50(12):1–11. https://doi.org/10.1038/s12276-018-0191-1
doi: 10.1038/s12276-018-0191-1 pubmed: 30546008
Donehower LA, Soussi T, Korkut A, Liu Y, Schultz A, Cardenas M, Li X, Babur O, Hsu TK, Lichtarge O, Weinstein JN, Akbani R, Wheeler DA (2019) Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep 28(5):1370-1384.e5. https://doi.org/10.1016/j.celrep.2019.07.001
doi: 10.1016/j.celrep.2019.07.001 pubmed: 31365877 pmcid: 7546539
Esposito MR, Aveic S, Seydel A, Tonini GP (2017) Neuroblastoma treatment in the post-genomic era. J Biomed Sci 24(1):14. https://doi.org/10.1186/s12929-017-0319-y
doi: 10.1186/s12929-017-0319-y pubmed: 28178969 pmcid: 5299732
Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22
doi: 10.18637/jss.v033.i01 pubmed: 20808728 pmcid: 2929880
Graydon CG, Mohideen S, Fowke KR (2020) LAG3’s enigmatic mechanism of action. Front Immunol 11:615317. https://doi.org/10.3389/fimmu.2020.615317
doi: 10.3389/fimmu.2020.615317 pubmed: 33488626
Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform 14:7. https://doi.org/10.1186/1471-2105-14-7
doi: 10.1186/1471-2105-14-7
Hu FF, Liu CJ, Liu LL, Zhang Q, Guo AY (2021) Expression profile of immune checkpoint genes and their roles in predicting immunotherapy response. Brief Bioinform. https://doi.org/10.1093/bib/bbaa176
doi: 10.1093/bib/bbaa176 pubmed: 34374760 pmcid: 8769916
Loftus LV, Amend SR, Pienta KJ (2022) Interplay between cell death and cell proliferation reveals new strategies for cancer therapy. Int J Mol Sci. https://doi.org/10.3390/ijms23094723
doi: 10.3390/ijms23094723 pubmed: 35563113 pmcid: 9105727
Maris JM (2010) Recent advances in neuroblastoma. N Engl J Med 362(23):2202–2211. https://doi.org/10.1056/NEJMra0804577
doi: 10.1056/NEJMra0804577 pubmed: 20558371 pmcid: 3306838
Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, Weiss WA (2016) Neuroblastoma. Nat Rev Dis Primers 2:16078. https://doi.org/10.1038/nrdp.2016.78
doi: 10.1038/nrdp.2016.78 pubmed: 27830764
Park JA, Cheung NV (2020) Targets and antibody formats for immunotherapy of neuroblastoma. J Clin Oncol 38(16):1836–1848. https://doi.org/10.1200/jco.19.01410
doi: 10.1200/jco.19.01410 pubmed: 32167865 pmcid: 7255979
Peifer M, Hertwig F, Roels F, Dreidax D, Gartlgruber M, Menon R, Krämer A, Roncaioli JL, Sand F, Heuckmann JM, Ikram F, Schmidt R, Ackermann S, Engesser A, Kahlert Y, Vogel W, Altmüller J, Nürnberg P, Thierry-Mieg J, Thierry-Mieg D, Mariappan A, Heynck S, Mariotti E, Henrich KO, Gloeckner C, Bosco G, Leuschner I, Schweiger MR, Savelyeva L, Watkins SC, Shao C, Bell E, Höfer T, Achter V, Lang U, Theissen J, Volland R, Saadati M, Eggert A, de Wilde B, Berthold F, Peng Z, Zhao C, Shi L, Ortmann M, Büttner R, Perner S, Hero B, Schramm A, Schulte JH, Herrmann C, O’Sullivan RJ, Westermann F, Thomas RK, Fischer M (2015) Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 526(7575):700–704. https://doi.org/10.1038/nature14980
doi: 10.1038/nature14980 pubmed: 26466568 pmcid: 4881306
Pentimalli F, Grelli S, Di Daniele N, Melino G, Amelio I (2019) Cell death pathologies: targeting death pathways and the immune system for cancer therapy. Genes Immun 20(7):539–554. https://doi.org/10.1038/s41435-018-0052-x
doi: 10.1038/s41435-018-0052-x pubmed: 30563970
Pinto NR, Applebaum MA, Volchenboum SL, Matthay KK, London WB, Ambros PF, Nakagawara A, Berthold F, Schleiermacher G, Park JR, Valteau-Couanet D, Pearson AD, Cohn SL (2015) Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol 33(27):3008–3017. https://doi.org/10.1200/jco.2014.59.4648
doi: 10.1200/jco.2014.59.4648 pubmed: 26304901 pmcid: 4567703
Qiu B, Matthay KK (2022) Advancing therapy for neuroblastoma. Nat Rev Clin Oncol 19(8):515–533. https://doi.org/10.1038/s41571-022-00643-z
doi: 10.1038/s41571-022-00643-z pubmed: 35614230
Sokol E, Desai AV, Applebaum MA, Valteau-Couanet D, Park JR, Pearson ADJ, Schleiermacher G, Irwin MS, Hogarty M, Naranjo A, Volchenboum S, Cohn SL, London WB (2020) Age, diagnostic category, tumor grade, and Mitosis–Karyorrhexis Index are independently prognostic in neuroblastoma: an INRG project. J Clin Oncol 38(17):1906–1918. https://doi.org/10.1200/jco.19.03285
doi: 10.1200/jco.19.03285 pubmed: 32315273 pmcid: 7280049
Strasser A, Vaux DL (2020) Cell death in the origin and treatment of cancer. Mol Cell 78(6):1045–1054. https://doi.org/10.1016/j.molcel.2020.05.014
doi: 10.1016/j.molcel.2020.05.014 pubmed: 32516599
Swift CC, Eklund MJ, Kraveka JM, Alazraki AL (2018) Updates in diagnosis, management, and treatment of neuroblastoma. Radiographics 38(2):566–580. https://doi.org/10.1148/rg.2018170132
doi: 10.1148/rg.2018170132 pubmed: 29528815
Tan K, Wu W, Zhu K, Lu L, Lv Z (2022) Identification and characterization of a glucometabolic prognostic gene signature in neuroblastoma based on N6-methyladenosine eraser ALKBH5. J Cancer 13(7):2105–2125. https://doi.org/10.7150/jca.69408
doi: 10.7150/jca.69408 pubmed: 35517412 pmcid: 9066222
Tolbert VP, Matthay KK (2018) Neuroblastoma: clinical and biological approach to risk stratification and treatment. Cell Tissue Res 372(2):195–209. https://doi.org/10.1007/s00441-018-2821-2
doi: 10.1007/s00441-018-2821-2 pubmed: 29572647 pmcid: 5918153
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, Eaton JK, Frenkel E, Kocak M, Corsello SM, Lutsenko S, Kanarek N, Santagata S, Golub TR (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science (new York, NY) 375(6586):1254–1261. https://doi.org/10.1126/science.abf0529
doi: 10.1126/science.abf0529
Wang JY, Wang WP (2020) B7–H4, a promising target for immunotherapy. Cell Immunol 347:104008. https://doi.org/10.1016/j.cellimm.2019.104008
doi: 10.1016/j.cellimm.2019.104008 pubmed: 31733822
Wang R, Wang Q (2021) Identification and external validation of a transcription factor-related prognostic signature in pediatric neuroblastoma. J Oncol 2021:1370451. https://doi.org/10.1155/2021/1370451
doi: 10.1155/2021/1370451 pubmed: 34992653 pmcid: 8727167
Wang Z, Cheng H, Xu H, Yu X, Sui D (2020) A five-gene signature derived from m6A regulators to improve prognosis prediction of neuroblastoma. Cancer Biomark Sect A Dis Mark 28(3):275–284. https://doi.org/10.3233/cbm-191196
doi: 10.3233/cbm-191196
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (cambridge Mass) 2(3):100141. https://doi.org/10.1016/j.xinn.2021.100141
doi: 10.1016/j.xinn.2021.100141 pubmed: 34557778
Xiang Q, Yang C, Luo Y, Liu F, Zheng J, Liu W, Ran H, Sun Y, Ren J, Wang Z (2022) Near-infrared II nanoadjuvant-mediated chemodynamic, photodynamic, and photothermal therapy combines immunogenic cell death with PD-L1 blockade to enhance antitumor immunity. Small 18(13):e2107809. https://doi.org/10.1002/smll.202107809
doi: 10.1002/smll.202107809 pubmed: 35143709
Yang J, Zhou J, Li C, Wang S (2021) Integrated analysis of the functions and prognostic values of RNA-binding proteins in neuroblastoma. PLoS ONE 16(12):e0260876. https://doi.org/10.1371/journal.pone.0260876
doi: 10.1371/journal.pone.0260876 pubmed: 34879089 pmcid: 8654225
Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R (2021) Molecular targeting therapies for neuroblastoma: progress and challenges. Med Res Rev 41(2):961–1021. https://doi.org/10.1002/med.21750
doi: 10.1002/med.21750 pubmed: 33155698
Zhang P, Ma K, Ke X, Liu L, Li Y, Liu Y, Wang Y (2021) Development and validation of a five-RNA-based signature and identification of candidate drugs for neuroblastoma. Front Genet 12:685646. https://doi.org/10.3389/fgene.2021.685646
doi: 10.3389/fgene.2021.685646 pubmed: 34745201 pmcid: 8564070
Zhang C, Ding Z, Luo H (2022) The prognostic role of m6A-related genes in paediatric neuroblastoma patients. Comput Math Methods Med 2022:8354932. https://doi.org/10.1155/2022/8354932
doi: 10.1155/2022/8354932 pubmed: 35047058 pmcid: 8763491
Zhong X, Liu Y, Liu H, Zhang Y, Wang L, Zhang H (2018) Identification of potential prognostic genes for neuroblastoma. Front Genet 9:589. https://doi.org/10.3389/fgene.2018.00589
doi: 10.3389/fgene.2018.00589 pubmed: 30555514 pmcid: 6282001

Auteurs

Yahui Han (Y)

Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.

Biyun Li (B)

Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.

Dun Yan (D)

Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.

Diming Zhou (D)

Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.

Xiafei Yuan (X)

Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.

Wei Zhao (W)

Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.

Da Zhang (D)

Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.

Jiao Zhang (J)

Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China. zhangjiaomail@126.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH