Molecular mechanisms of amyotrophic lateral sclerosis as broad therapeutic targets for gene therapy applications utilizing adeno-associated viral vectors.
RNA binding proteins
adeno-associated virus
amyotrophic lateral sclerosis
gene therapy
proteostasis
Journal
Medicinal research reviews
ISSN: 1098-1128
Titre abrégé: Med Res Rev
Pays: United States
ID NLM: 8103150
Informations de publication
Date de publication:
07 2023
07 2023
Historique:
revised:
19
08
2022
received:
13
11
2021
accepted:
02
02
2023
medline:
7
6
2023
pubmed:
15
2
2023
entrez:
14
2
2023
Statut:
ppublish
Résumé
Despite the devastating clinical outcome of the neurodegenerative disease, amyotrophic lateral sclerosis (ALS), its etiology remains mysterious. Approximately 90% of ALS is characterized as sporadic, signifying that the patient has no family history of the disease. The development of an impactful disease modifying therapy across the ALS spectrum has remained out of grasp, largely due to the poorly understood mechanisms of disease onset and progression. Currently, ALS is invariably fatal and rapidly progressive. It is hypothesized that multiple factors can lead to the development of ALS, however, treatments are often focused on targeting specific familial forms of the disease (10% of total cases). There is a strong need to develop disease modifying treatments for ALS that can be effective across the full ALS spectrum of familial and sporadic cases. Although the onset of disease varies significantly between patients, there are general disease mechanisms and progressions that can be seen broadly across ALS patients. Therefore, this review explores the targeting of these widespread disease mechanisms as possible areas for therapeutic intervention to treat ALS broadly. In particular, this review will focus on targeting mechanisms of defective protein homeostasis and RNA processing, which are both increasingly recognized as design principles of ALS pathogenesis. Additionally, this review will explore the benefits of gene therapy as an approach to treating ALS, specifically focusing on the use of adeno-associated virus (AAV) as a vector for gene delivery to the CNS and recent advances in the field.
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
829-854Subventions
Organisme : Medical Research Council
ID : MR/S006591/1
Pays : United Kingdom
Informations de copyright
© 2023 The Authors. Medicinal Research Reviews published by Wiley Periodicals LLC.
Références
Taylor JP, Brown RH, Cleveland DW. Decoding ALS: from genes to mechanism. Nature. 2016;539(7628):197-206. doi:10.1038/nature20413
Talbott EO, Malek AM, Lacomis D. Chapter 13-the epidemiology of amyotrophic lateral sclerosis. In: Rosano C, Ikram MA, Ganguli M, eds. Handbook of Clinical Neurology. Vol 138. Elsevier; 2016:225-238. doi:10.1016/b978-0-12-802973-2.00013-6
Alonso A, Logroscino G, Jick SS, Hernán MA. Incidence and lifetime risk of motor neuron disease in the United Kingdom: a population-based study. Eur J Neurol. 2009;16(6):745-751. doi:10.1111/j.1468-1331.2009.02586.x
Mehta P, Kaye W, Raymond J, et al. Prevalence of amyotrophic lateral sclerosis-United States, 2014. MMWR Morb Mortal Wkly Rep. 2018;67(7):216-218. doi:10.15585/mmwr.mm6707a3
Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130-133. doi:10.1126/science.1134108
DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-Linked FTD and ALS. Neuron. 2011;72(2):245-256. doi:10.1016/j.neuron.2011.09.011
Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-Linked ALS-FTD. Neuron. 2011;72(2):257-268. doi:10.1016/j.neuron.2011.09.010
Arai T, Hasegawa M, Akiyama H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351(3):602-611. doi:10.1016/j.bbrc.2006.10.093
Knopman DS, Roberts RO. Estimating the number of persons with frontotemporal lobar degeneration in the US population. J Mol Neurosci. 2011;45(3):330-335. doi:10.1007/s12031-011-9538-y
Al-Chalabi A, Hardiman O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol. 2013;9(11):617-628. doi:10.1038/nrneurol.2013.203
Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA. ALS genetics, mechanisms, and therapeutics: where are we now. Front Neurosci. 2019;13:1310. doi:10.3389/fnins.2019.01310
Hergesheimer RC, Chami AA, de Assis DR, et al. The debated toxic role of aggregated TDP-43 in amyotrophic lateral sclerosis: a resolution in sight. Brain. 2019;142(5):1176-1194. doi:10.1093/brain/awz078
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci. 2019;12:25. doi:10.3389/fnmol.2019.00025
Batulan Z, Taylor DM, Aarons RJ, et al. Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis. Neurobiol Dis. 2006;24(2):213-225. doi:10.1016/j.nbd.2006.06.017
Pozzi S, Thammisetty SS, Codron P, et al. Virus-mediated delivery of antibody targeting TAR DNA-binding protein-43 mitigates associated neuropathology. J Clin Invest. 2019;129(4):1581-1595. doi:10.1172/jci123931
Wang P, Wander CM, Yuan CX, Bereman MS, Cohen TJ. Acetylation-induced TDP-43 pathology is suppressed by an HSF1-dependent chaperone program. Nat Commun. 2017;8(1):82. doi:10.1038/s41467-017-00088-4
Bensimon G, Lacomblez L, Meininger V. A controlled trial of Riluzole in amyotrophic lateral sclerosis. N Engl J Med. 1994;330(9):585-591. doi:10.1056/nejm199403033300901
Abe K, Aoki M, Tsuji S, et al. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neuro. 2017;16(7):505-512. doi:10.1016/s1474-4422(17)30115-1
Hinchcliffe M, Smith A. Riluzole: real-world evidence supports significant extension of median survival times in patients with amyotrophic lateral sclerosis. Degener Neurol Neuromuscul Dis. 2017;7:61-70. doi:10.2147/dnnd.s135748
Miller RG, Jackson CE, Kasarskis EJ, et al. Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: multidisciplinary care, symptom management, and cognitive/behavioral impairment (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2009;73(15):1227-1233. doi:10.1212/wnl.0b013e3181bc01a4
Mueller C, Berry JD, McKenna-Yasek DM, et al. SOD1 suppression with adeno-associated virus and MicroRNA in familial ALS. N Engl J Med. 2020;383(2):151-158. doi:10.1056/nejmoa2005056
Jiang J, Zhu Q, Gendron TF, et al. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-Containing RNAs. Neuron. 2016;90(3):535-550. doi:10.1016/j.neuron.2016.04.006
Mullard A. Biogen files ALS drug for FDA review, putting neuroscience-accelerated approvals back in the hot seat. Nat Rev Drug Discovery. 2022;21:626. doi:10.1038/d41573-022-00134-x
Becker LA, Huang B, Bieri G, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544(7650):367-371. doi:10.1038/nature22038
Cappella M, Ciotti C, Cohen-Tannoudji M, Biferi MG. Gene therapy for ALS-a perspective. Int J Mol Sci. 2019;20(18):4388. doi:10.3390/ijms20184388
Kurtishi A, Rosen B, Patil KS, Alves GW, Møller SG. Cellular proteostasis in neurodegeneration. Mol Neurobiol. 2019;56(5):3676-3689. doi:10.1007/s12035-018-1334-z
Barmada SJ, Serio A, Arjun A, et al. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat Chem Biol. 2014;10(8):677-685. doi:10.1038/nchembio.1563
Barmada SJ, Skibinski G, Korb E, Rao EJ, Wu JY, Finkbeiner S. Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci. 2010;30(2):639-649. doi:10.1523/jneurosci.4988-09.2010
Kole AJ, Annis RP, Deshmukh M. Mature neurons: equipped for survival. Cell Death Dis. 2013;4(6):e689. doi:10.1038/cddis.2013.220
Pandya VA, Patani R. Decoding the relationship between ageing and amyotrophic lateral sclerosis: a cellular perspective. Brain. 2019;143:1057-1072. doi:10.1093/brain/awz360
Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol. 2017;217(1):51-63. doi:10.1083/jcb.201709072
Vanden Broeck L, Callaerts P, Dermaut B. TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis. Trends Mol Med. 2014;20(2):66-71. doi:10.1016/j.molmed.2013.11.003
Lee EB, Lee VMY, Trojanowski JQ. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci. 2011;13(1):38-50. doi:10.1038/nrn3121
Yerbury JJ, Ooi L, Dillin A, et al. Walking the tightrope: proteostasis and neurodegenerative disease. J Neurochem. 2016;137(4):489-505. doi:10.1111/jnc.13575
Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019;366(6467):818-822. doi:10.1126/science.aax3769
Ciechanover A, Kwon YT. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med. 2015;47(3):e147. doi:10.1038/emm.2014.117
Wang X, Fan H, Ying Z, Li B, Wang H, Wang G. Degradation of TDP-43 and its pathogenic form by autophagy and the ubiquitin-proteasome system. Neurosci Lett. 2010;469(1):112-116. doi:10.1016/j.neulet.2009.11.055
Urushitani M, Sato T, Bamba H, Hisa Y, Tooyama I. Synergistic effect between proteasome and autophagosome in the clearance of polyubiquitinated TDP-43. J Neurosci Res. 2009;88(4):784-797. doi:10.1002/jnr.22243
Rock KL, Gramm C, Rothstein L, et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 1994;78(5):761-771. doi:10.1016/s0092-8674(94)90462-6
Collins GA, Goldberg AL. The logic of the 26S proteasome. Cell. 2017;169(5):792-806. doi:10.1016/j.cell.2017.04.023
Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017;86(1):129-157. doi:10.1146/annurev-biochem-060815-014922
Menzies FM, Fleming A, Caricasole A, et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron. 2017;93(5):1015-1034. doi:10.1016/j.neuron.2017.01.022
Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19(6):349-364. doi:10.1038/s41580-018-0003-4
Stolz A, Ernst A, Dikic I. Cargo recognition and trafficking in selective autophagy. Nature Cell Biol. 2014;16(6):495-501. doi:10.1038/ncb2979
Lamark T, Johansen T. Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J Cell Biol. 2012;2012:1-21. doi:10.1155/2012/736905
Williams KL, Topp S, Yang S, et al. CCNF mutations in amyotrophic lateral sclerosis and frontotemporal dementia. Nat Commun. 2016;7(1):11253. doi:10.1038/ncomms11253
Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar HA, Mackenzie IRA. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain. 2009;132(11):2922-2931. doi:10.1093/brain/awp214
Fecto F, Yan J, Vemula SP, et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol. 2011;68(11):1440-1446. doi:10.1001/archneurol.2011.250
Nassif M, Woehlbier U, Manque PA. The enigmatic role of C9ORF72 in autophagy. Front Neurosci. 2017;11:442. doi:10.3389/fnins.2017.00442
Freischmidt A, Wieland T, Richter B, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nature Neurosci. 2015;18(5):631-636. doi:10.1038/nn.4000
Deng HX, Chen W, Hong ST, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477(7363):211-215. doi:10.1038/nature10353
Johnson JO, Mandrioli J, Benatar M, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68(5):857-864. doi:10.1016/j.neuron.2010.11.036
Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59-62. doi:10.1038/362059a0
Scotter EL, Vance C, Nishimura AL, et al. Differential roles of the ubiquitin proteasome system (UPS) and autophagy in the clearance of soluble and aggregated TDP-43 species. J Cell Sci. 2014;127(6):1263-1278. doi:10.1242/jcs.140087
Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol. 2019;20(7):421-435. doi:10.1038/s41580-019-0101-y
Chen T, Benmohamed R, Kim J, et al. ADME-guided design and synthesis of aryloxanyl pyrazolone derivatives to block mutant superoxide dismutase 1 (SOD1) cytotoxicity and protein aggregation: potential application for the treatment of amyotrophic lateral sclerosis. J Med Chem. 2011;55(1):515-527. doi:10.1021/jm2014277
Trippier PC, Benmohamed R, Kirsch DR, Silverman RB. Substituted pyrazolones require N2 hydrogen bond donating ability to protect against cytotoxicity from protein aggregation of mutant superoxide dismutase 1. Bioorg Med Chem Lett. 2012;22(21):6647-6650. doi:10.1016/j.bmcl.2012.08.114
Zhang Y, Benmohamed R, Huang H, et al. Arylazanylpyrazolone derivatives as inhibitors of mutant superoxide dismutase 1 dependent protein aggregation for the treatment of amyotrophic lateral sclerosis. J Med Chem. 2013;56(6):2665-2675. doi:10.1021/jm400079a
Pierce NW, Kleiger G, Shan S, Deshaies RJ. Detection of sequential polyubiquitylation on a millisecond timescale. Nature. 2009;462(7273):615-619. doi:10.1038/nature08595
Iconomou M, Saunders DN. Systematic approaches to identify E3 ligase substrates. Biochem J. 2016;473(22):4083-4101. doi:10.1042/bcj20160719
Rayner SL, Morsch M, Molloy MP, Shi B, Chung R, Lee A. Using proteomics to identify ubiquitin ligase-substrate pairs: how novel methods may unveil therapeutic targets for neurodegenerative diseases. Cell Mol Life Sci. 2019;76(13):2499-2510. doi:10.1007/s00018-019-03082-9
Lee YC, Huang WC, Lin JH, et al. Znf179 E3 ligase-mediated TDP-43 polyubiquitination is involved in TDP-43- ubiquitinated inclusions (UBI) (+)-related neurodegenerative pathology. J Biomed Sci. 2018;25(1):76. doi:10.1186/s12929-018-0479-4
Hebron ML, Lonskaya I, Sharpe K, et al. Parkin ubiquitinates Tar-DNA Binding Protein-43 (TDP-43) and promotes its cytosolic accumulation via interaction with histone deacetylase 6 (HDAC6). J Biol Chem. 2013;288(6):4103-4115. doi:10.1074/jbc.m112.419945
Pyo JO, Yoo SM, Ahn HH, et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun. 2013;4(1):2300. doi:10.1038/ncomms3300
Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441(7095):885-889. doi:10.1038/nature04724
Cascella R, Fani G, Capitini C, et al. Quantitative assessment of the degradation of aggregated TDP-43 mediated by the ubiquitin proteasome system and macroautophagy. FASEB J. 2017;31(12):5609-5624. doi:10.1096/fj.201700292rr
Tamaki Y, Shodai A, Morimura T, et al. Elimination of TDP-43 inclusions linked to amyotrophic lateral sclerosis by a misfolding-specific intrabody with dual proteolytic signals. Sci Rep. 2018;8(1):6030. doi:10.1038/s41598-018-24463-3
den Brave F, Cairo LV, Jagadeesan C, et al. Chaperone-mediated protein disaggregation triggers proteolytic clearance of intra-nuclear protein inclusions. Cell Rep. 2020;31(9):107680. doi:10.1016/j.celrep.2020.107680
Xue YC, Ng CS, Xiang P, et al. Dysregulation of RNA-binding proteins in amyotrophic lateral sclerosis. Front Mol Neurosci. 2020;13:78. doi:10.3389/fnmol.2020.00078
Gomes E, Shorter J. The molecular language of membraneless organelles. J Biol Chem. 2019;294(18):7115-7127. doi:10.1074/jbc.tm118.001192
An H, Williams NG, Shelkovnikova TA. NEAT1 and paraspeckles in neurodegenerative diseases: a missing lnc found. Noncoding RNA Res. 2018;3(4):243-252. doi:10.1016/j.ncrna.2018.11.003
Desai P, Bandopadhyay R. Pathophysiological implications of RNP granules in frontotemporal dementia and ALS. Neurochem Int. 2020;140:104819. doi:10.1016/j.neuint.2020.104819
Baradaran-Heravi Y, Van Broeckhoven C, van der Zee J. Stress granule mediated protein aggregation and underlying gene defects in the FTD-ALS spectrum. Neurobiol Dis. 2020;134:104639. doi:10.1016/j.nbd.2019.104639
Fernandes N, Eshleman N, Buchan JR. Stress granules and ALS: a case of causation or correlation? Adv Neurobiology. 2018;20:173-212. doi:10.1007/978-3-319-89689-2_7
Gasset-Rosa F, Lu S, Yu H, et al. Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron. 2019;102(2):339-357. doi:10.1016/j.neuron.2019.02.038
Mann JR, Gleixner AM, Mauna JC, et al. RNA binding antagonizes neurotoxic phase transitions of TDP-43. Neuron. 2019;102(2):321-338. doi:10.1016/j.neuron.2019.01.048
Fernandes N, Nero L, Lyons S, et al. Stress granule assembly can facilitate but is not required for TDP-43 cytoplasmic aggregation. Biomolecules. 2020;10(10):1367. doi:10.3390/biom10101367
Butti Z, Patten SA. RNA dysregulation in amyotrophic lateral sclerosis. Front Genet. 2019;9:712. doi:10.3389/fgene.2018.00712
Lee YB, Chen HJ, Peres JN, et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 2013;5(5):1178-1186. doi:10.1016/j.celrep.2013.10.049
Mori K, Lammich S, Mackenzie IRA, et al. hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol. 2013;125(3):413-423. doi:10.1007/s00401-013-1088-7
Lu L, Zheng L, Viera L, et al. Mutant Cu/Zn-superoxide dismutase associated with amyotrophic lateral sclerosis destabilizes vascular endothelial growth factor mRNA and downregulates its expression. J Neurosci. 2007;27(30):7929-7938. doi:10.1523/jneurosci.1877-07.2007
Lu L, Wang S, Zheng L, et al. Amyotrophic lateral sclerosis-linked mutant SOD1 sequesters hu antigen R (HuR) and TIA-1-related protein (TIAR). J Biol Chem. 2009;284(49):33989-33998. doi:10.1074/jbc.m109.067918
Arnold ES, Ling SC, Huelga SC, et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci. 2013;110(8):E736-E745. doi:10.1073/pnas.1222809110
Buratti E. Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci. 2008;13(13):867-878. doi:10.2741/2727
Humphrey J, Birsa N, Milioto C, et al. FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention. Nucleic Acids Res. 2020;48:6889-6905. doi:10.1093/nar/gkaa410
Reber S, Stettler J, Filosa G, et al. Minor intron splicing is regulated by FUS and affected by ALS-associated FUS mutants. EMBO J. 2016;35(14):1504-1521. doi:10.15252/embj.201593791
Zhou Y, Liu S, Liu G, Öztürk A, Hicks GG. ALS-associated FUS mutations result in compromised FUS alternative splicing and autoregulation. PLoS Genet. 2013;9(10):e1003895. doi:10.1371/journal.pgen.1003895
Kishore S, Luber S, Zavolan M. Deciphering the role of RNA-binding proteins in the post-transcriptional control of gene expression. Briefings Funct Genomics. 2010;9(5-6):391-404. doi:10.1093/bfgp/elq028
Picchiarelli G, Dupuis L. Role of RNA binding proteins with prion-like domains in muscle and neuromuscular diseases. Cell Stress. 2020;4(4):76-91. doi:10.15698/cst2020.04.217
Polymenidou M, Lagier-Tourenne C, Hutt KR, et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nature Neurosci. 2011;14(4):459-468. doi:10.1038/nn.2779
Kabashi E, Valdmanis PN, Dion P, et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genet. 2008;40(5):572-574. doi:10.1038/ng.132
Sreedharan J, Blair IP, Tripathi VB, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319(5870):1668-1672. doi:10.1126/science.1154584
Millecamps S, Salachas F, Cazeneuve C, et al. SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J Med Genet. 2010;47(8):554-560. doi:10.1136/jmg.2010.077180
Daoud H, Valdmanis PN, Kabashi E, et al. Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis. J Med Genet. 2008;46(2):112-114. doi:10.1136/jmg.2008.062463
Lagier-Tourenne C, Polymenidou M, Cleveland DW. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Gen. 2010;19(R1):R46-R64. doi:10.1093/hmg/ddq137
Mackenzie IRA, Bigio EH, Ince PG, et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol. 2007;61(5):427-434. doi:10.1002/ana.21147
Yerbury JJ, Farrawell NE, McAlary L. Proteome homeostasis dysfunction: a unifying principle in ALS pathogenesis. Trends Neurosci. 2020;43(5):274-284. doi:10.1016/j.tins.2020.03.002
Zhao M, Kim JR, van Bruggen R, Park J. RNA-binding proteins in amyotrophic lateral sclerosis. Mol Cells. 2018;41(9):818-829. doi:10.14348/molcells.2018.0243
Loganathan S, Lehmkuhl EM, Eck RJ, Zarnescu DC. To be or not to be…toxic-is RNA association with TDP-43 complexes deleterious or protective in neurodegeneration. Front Mol Biosci. 2020;6:154. doi:10.3389/fmolb.2019.00154
Franzmann TM, Alberti S. Prion-like low-complexity sequences: key regulators of protein solubility and phase behavior. J Biol Chem. 2019;294(18):7128-7136. doi:10.1074/jbc.tm118.001190
Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017;357(6357):eaaf4382. doi:10.1126/science.aaf4382
Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017;18(5):285-298. doi:10.1038/nrm.2017.7
Guenther EL, Cao Q, Trinh H, et al. Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation. Nat Struct Mol Biol. 2018;25(6):463-471. doi:10.1038/s41594-018-0064-2
Maharana S, Wang J, Papadopoulos DK, et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science. 2018;360(6391):918-921. doi:10.1126/science.aar7366
D'Angelo MA, Raices M, Panowski SH, Hetzer MW. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell. 2009;136(2):284-295. doi:10.1016/j.cell.2008.11.037
Li P, Banjade S, Cheng HC, et al. Phase transitions in the assembly of multivalent signalling proteins. Nature. 2012;483(7389):336-340. doi:10.1038/nature10879
Espinosa JR, Joseph JA, Sanchez-Burgos I, Garaizar A, Frenkel D, Collepardo-Guevara R. Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components. Proc Natl Acad Sci. 2020;117(24):13238-13247. doi:10.1073/pnas.1917569117
Modic M, Grosch M, Rot G, et al. Cross-regulation between TDP-43 and paraspeckles promotes pluripotency-differentiation transition. Mol Cell. 2019;74(5):951-965. doi:10.1016/j.molcel.2019.03.041
Tyzack GE, Luisier R, Taha DM, et al. Widespread FUS mislocalization is a molecular hallmark of amyotrophic lateral sclerosis. Brain. 2019;142(9):2572-2580. doi:10.1093/brain/awz217
Luisier R, Tyzack GE, Hall CE, et al. Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS. Nat Commun. 2018;9(1):2010. doi:10.1038/s41467-018-04373-8
Hogan AL, Grima N, Fifita JA, et al. Splicing factor proline and glutamine rich intron retention, reduced expression and aggregate formation are pathological features of amyotrophic lateral sclerosis. Neuropath Appl Neuro. 2021;47(7):990-1003. doi:10.1111/nan.12749
Tank EM, Figueroa-Romero C, Hinder LM, et al. Abnormal RNA stability in amyotrophic lateral sclerosis. Nat Commun. 2018;9(1):2845. doi:10.1038/s41467-018-05049-z
Lehmkuhl EM, Zarnescu DC. RNA metabolism in neurodegenerative diseases. Adv Neurobiology. 2018;20:283-301. doi:10.1007/978-3-319-89689-2_11
Altman T, Ionescu A, Ibraheem A, et al. Axonal TDP-43 condensates drive neuromuscular junction disruption through inhibition of local synthesis of nuclear encoded mitochondrial proteins. Nat Commun. 2021;12(1):6914. doi:10.1038/s41467-021-27221-8
Mauger O, Lemoine F, Scheiffele P. Targeted intron retention and excision for rapid gene regulation in response to neuronal activity. Neuron. 2016;92(6):1266-1278. doi:10.1016/j.neuron.2016.11.032
Monteuuis G, Wong JJL, Bailey CG, Schmitz U, Rasko JEJ. The changing paradigm of intron retention: regulation, ramifications and recipes. Nucleic Acids Res. 2019;47(22):11497-11513. doi:10.1093/nar/gkz1068
Rinaldi C, Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol. 2018;14(1):9-21. doi:10.1038/nrneurol.2017.148
Wang Y, Patani R. Novel therapeutic targets for amyotrophic lateral sclerosis: ribonucleoproteins and cellular autonomy. Expert Opin Ther Targets. 2020;24:971-984. doi:10.1080/14728222.2020.1805734
Tyzack GE, Neeves J, Crerar H, et al. Aberrant cytoplasmic intron retention is a blueprint for RNA binding protein mislocalization in VCP-related amyotrophic lateral sclerosis. Brain. 2021;144(7):1985-1993. doi:10.1093/brain/awab078
Guo L, Kim HJ, Wang H, et al. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell. 2018;173(3):677-692. doi:10.1016/j.cell.2018.03.002
Barmada SJ, Ju S, Arjun A, et al. Amelioration of toxicity in neuronal models of amyotrophic lateral sclerosis by hUPF1. Proc Natl Acad Sci. 2015;112(25):7821-7826. doi:10.1073/pnas.1509744112
Jackson KL, Dayton RD, Orchard EA, et al. Preservation of forelimb function by UPF1 gene therapy in a rat model of TDP-43-induced motor paralysis. Gene Therapy. 2015;22(1):20-28. doi:10.1038/gt.2014.101
Sumner CJ, Crawford TO. Two breakthrough gene-targeted treatments for spinal muscular atrophy: challenges remain. J Clin Invest. 2018;128(8):3219-3227. doi:10.1172/jci121658
Lefebvre S, Bürglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80(1):155-165. doi:10.1016/0092-8674(95)90460-3
Chaytow H, Huang YT, Gillingwater TH, Faller KME. The role of survival motor neuron protein (SMN) in protein homeostasis. Cell Mol Life Sci. 2018;75(21):3877-3894. doi:10.1007/s00018-018-2849-1
Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377(18):1713-1722. doi:10.1056/nejmoa1706198
Puhl DL, D'Amato AR, Gilbert RJ. Challenges of gene delivery to the central nervous system and the growing use of biomaterial vectors. Brain Res Bull. 2019;150:216-230. doi:10.1016/j.brainresbull.2019.05.024
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541-555. doi:10.1038/nrg3763
Lykken EA, Shyng C, Edwards RJ, Rozenberg A, Gray SJ. Recent progress and considerations for AAV gene therapies targeting the central nervous system. J Neurodev Disord. 2018;10(1):16. doi:10.1186/s11689-018-9234-0
Hüser D, Khalid D, Lutter T, et al. High prevalence of infectious adeno-associated virus (AAV) in human peripheral blood mononuclear cells indicative of T lymphocytes as sites of AAV persistence. J Virol. 2017;91(4):e02137-16. doi:10.1128/jvi.02137-16
Wilmott P, Lisowski L, Alexander IE, Logan GJ. A user's guide to the inverted terminal repeats of adeno-associated virus. Hum Gene Ther Methods. 2019;30(6):206-213. doi:10.1089/hgtb.2019.276
Hudry E, Vandenberghe LH. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron. 2019;101(5):839-862. doi:10.1016/j.neuron.2019.02.017
Dalwadi DA, Calabria A, Tiyaboonchai A, et al. AAV integration in human hepatocytes. Mol Ther. 2021;29(10):2898-2909. doi:10.1016/j.ymthe.2021.08.031
Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nature Biotechnol. 2009;27(1):59-65. doi:10.1038/nbt.1515
Hinderer C, Katz N, Buza EL, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther. 2018;29(3):285-298. doi:10.1089/hum.2018.015
Feldman AG, Parsons JA, Dutmer CM, et al. Subacute liver failure following gene replacement therapy for spinal muscular atrophy type 1. J Pediatr. 2020;225:252-258. doi:10.1016/j.jpeds.2020.05.044
Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev. 2018;8:87-104. doi:10.1016/j.omtm.2017.11.007
Wilson JM, Flotte TR. Moving forward after two deaths in a gene therapy trial of myotubular myopathy. Hum Gene Ther. 2020;31(13-14):695-696. doi:10.1089/hum.2020.182
Chan KY, Jang MJ, Yoo BB, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nature Neurosci. 2017;20(8):1172-1179. doi:10.1038/nn.4593
Deverman BE, Pravdo PL, Simpson BP, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nature Biotechnol. 2016;34(2):204-209. doi:10.1038/nbt.3440
Hordeaux J, Wang Q, Katz N, Buza EL, Bell P, Wilson JM. The neurotropic properties of AAV-PHP.B are limited to C57BL/6J mice. Mol Ther. 2018;26(3):664-668. doi:10.1016/j.ymthe.2018.01.018
Matsuzaki Y, Konno A, Mochizuki R, et al. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain. Neurosci Lett. 2018;665:182-188. doi:10.1016/j.neulet.2017.11.049
Hordeaux J, Yuan Y, Clark PM, et al. The GPI-linked protein LY6A drives AAV-PHP.B transport across the blood-brain barrier. Mol Ther. 2019;27(5):912-921. doi:10.1016/j.ymthe.2019.02.013
Huang Q, Chan KY, Tobey IG, et al. Delivering genes across the blood-brain barrier: LY6A, a novel cellular receptor for AAV-PHP.B capsids. PLoS One. 2019;14(11):e0225206. doi:10.1371/journal.pone.0225206
Mansour AA, Gonçalves JT, Bloyd CW, et al. An in vivo model of functional and vascularized human brain organoids. Nature Biotechnol. 2018;36(5):432-441. doi:10.1038/nbt.4127
Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther. 2008;16(6):1073-1080. doi:10.1038/mt.2008.76
Goertsen D, Flytzanis NC, Goeden N, et al. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nature Neurosci. 2022;25(1):106-115. doi:10.1038/s41593-021-00969-4
Ravindra Kumar S, Miles TF, Chen X, et al. Multiplexed Cre-dependent selection yields systemic AAVs for targeting distinct brain cell types. Nature Methods. 2020;17:541-550. doi:10.1038/s41592-020-0799-7
Bravo-Hernandez M, Tadokoro T, Navarro MR, et al. Spinal subpial delivery of AAV9 enables widespread gene silencing and blocks motoneuron degeneration in ALS. Nature Med. 2020;26(1):118-130. doi:10.1038/s41591-019-0674-1
Mastakov MY, Baer K, Kotin RM, During MJ. Recombinant adeno-associated virus serotypes 2- and 5-mediated gene transfer in the mammalian brain: quantitative analysis of heparin co-infusion. Mol Ther. 2002;5(4):371-380. doi:10.1006/mthe.2002.0564
Cearley CN, Wolfe JH. Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther. 2006;13(3):528-537. doi:10.1016/j.ymthe.2005.11.015
Cabanes-Creus M, Westhaus A, Navarro RG, et al. Attenuation of heparan sulfate proteoglycan binding enhances in vivo transduction of human primary hepatocytes with AAV2. Mol Ther Methods Clin Dev. 2020;17:1139-1154. doi:10.1016/j.omtm.2020.05.004
Sullivan JA, Stanek LM, Lukason MJ, et al. Rationally designed AAV2 and AAVrh8R capsids provide improved transduction in the retina and brain. Gene Ther. 2018;25(3):205-219. doi:10.1038/s41434-018-0017-8
Kanaan NM, Sellnow RC, Boye SL, et al. Rationally engineered AAV capsids improve transduction and volumetric spread in the CNS. Mol Ther Nucleic Acids. 2017;8:184-197. doi:10.1016/j.omtn.2017.06.011
Tordo J, O'Leary C, Antunes ASLM, et al. A novel adeno-associated virus capsid with enhanced neurotropism corrects a lysosomal transmembrane enzyme deficiency. Brain. 2018;141(7):2014-2031. doi:10.1093/brain/awy126
Meyer K, Ferraiuolo L, Schmelzer L, et al. Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose-response study in mice and nonhuman primates. Mol Ther. 2015;23(3):477-487. doi:10.1038/mt.2014.210
Bey K, Deniaud J, Dubreil L, et al. Intra-CSF AAV9 and AAVrh10 administration in nonhuman primates: promising routes and vectors for which neurological diseases. Mol Ther Methods Clin Dev. 2020;17:771-784. doi:10.1016/j.omtm.2020.04.001