Dependence of Brain-Computer Interface Control Training on Personality Traits.
brain–computer interfaces
imagination of flexion of the foot
imagination of locomotion
imagination of opening the hand
learning to imagine movements
personality traits
Journal
Doklady. Biochemistry and biophysics
ISSN: 1608-3091
Titre abrégé: Dokl Biochem Biophys
Pays: United States
ID NLM: 101126895
Informations de publication
Date de publication:
Dec 2022
Dec 2022
Historique:
received:
17
05
2022
accepted:
11
08
2022
revised:
11
08
2022
entrez:
14
2
2023
pubmed:
15
2
2023
medline:
17
2
2023
Statut:
ppublish
Résumé
Personality traits (PTs) are predictors of the success of control of brain-computer interfaces (BCIs); however, it is unknown how the PTs that are optimal for BCI control changes during training. The paper for the first time analyzes the correlations between PTs and the accuracy of the classification (AC) of brain states in imagining the movements of the hands, feet, and locomotion during 10-day training of ten volunteers in BCI control. In the first 3 days of training, the AC is higher for more stressed and anxious volunteers; in the last days, for calmer ones. In the middle of the training period, AC is higher in low-demonstrativeness persons, it is more pronounced when imagining foot movements. Correlations of low demonstrativeness, as well as of foresight and self-control with AC when imagining foot movements are revealed significantly more often than when imagining hand movements and locomotions. During almost the entire period of training, AC with locomotion imagination is higher in individualists. The results make it possible to propose individually-oriented recommendations for the use of BCI based on the imagination of movements for the rehabilitation of patients with motor disorders.
Identifiants
pubmed: 36786985
doi: 10.1134/S1607672922060035
pii: 10.1134/S1607672922060035
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
273-277Informations de copyright
© 2022. Pleiades Publishing, Ltd.
Références
Jeunet, C., N’Kaoua, B., Subramanian, S., et al., Predicting mental imagery-based bci performance from personality, cognitive profile and neurophysiological patterns, PLoS One, 2015, vol. 10, no. 12, p. e0143962.
doi: 10.1371/journal.pone.0143962
pubmed: 26625261
pmcid: 4666487
Hammer, E.M., Kaufmann, T., Kleih, S.C., et al., Visuo-motor coordination ability predicts performance with brain-computer interfaces controlled by modulation of sensorimotor rhythms (SMR), Front. Hum. Neurosci., 2014, vol. 8, p. 574.
doi: 10.3389/fnhum.2014.00574
pubmed: 25147518
pmcid: 4123785
Vuckovic, A. and Osuagwu, B.A., Using a motor imagery questionnaire to estimate the performance of a brain-computer interface based on object-oriented motor imagery, Clin. Neurophysiol., 2013, vol. 124, no. 8, pp. 1586–1595.
doi: 10.1016/j.clinph.2013.02.016
pubmed: 23535455
Kubler, A., Nijboer, F., Mellinger, J., et al., Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface, Neurology, 2005, vol. 64, no. 10, pp. 1775–1777.
doi: 10.1212/01.WNL.0000158616.43002.6D
pubmed: 15911809
Hagedorn, L.J., Leeuwis, N., and Alimardani, M., Prediction of inefficient BCI users based on cognitive skills and personality traits, bioRxiv, 2021, p. 461955.
Leeuwis, N., Paas, A., and Alimardani, M., Vividness of visual imagery and personality impact motor-imagery brain computer interfaces, Front. Hum. Neurosci., 2021, vol. 15, p. 634748.
doi: 10.3389/fnhum.2021.634748
pubmed: 33889080
pmcid: 8055841
Nijboer, F., Birbaumer, N., and Kubler, A., The influence of psychological state and motivation on brain-computer interface performance in patients with amyotrophic lateral sclerosis—a longitudinal study, Front. Neurosci., 2010, vol. 4, p. 55.
pubmed: 20700521
pmcid: 2916671
Witte, M., Kober, S.E., Ninaus, M., et al., Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training, Front. Hum. Neurosci., 2013, vol. 7, p. 478.
doi: 10.3389/fnhum.2013.00478
pubmed: 23966933
pmcid: 3744034
Zapala, D., Malkiewicz, M., Francuz, P., et al., Temperament predictors of motor imagery control in BCI, J. Psychophysiol., 2019, vol. 34, no. 4, pp. 246–254.
doi: 10.1027/0269-8803/a000252
Ahn, M., Ahn, S., Hong, J.H., et al., Gamma band activity associated with BCI performance: simultaneous MEG/EEG study, Front. Hum. Neurosci., 2013, vol. 7, p. 848.
doi: 10.3389/fnhum.2013.00848
pubmed: 24367322
pmcid: 3853408
Bamdadian, A., Guan, C., Ang, K.K., et al., The predictive role of pre-cue EEG rhythms on MI-based BCI classification performance, J. Neurosci. Methods, 2014, vol. 235, pp. 138–144.
doi: 10.1016/j.jneumeth.2014.06.011
pubmed: 24979726
Grosse-Wentrup, M. and Schölkopf, B., High gamma-power predicts performance in sensorimotor-rhythm brain-computer interfaces, J. Neural Eng., 2012, vol. 9, no. 4, p. 6046001.
doi: 10.1088/1741-2560/9/4/046001
Bobrova, E.V., Reshetnikova, V.V., Vershinina, E.A., et al., Interhemispheric asymmetry and personality traits of brain-computer interface users in hand movement imagination, Dokl. Biol. Sci., 2020, vol. 495, pp. 265–267.
doi: 10.1134/S0012496620060010
pubmed: 33486660
Bobrova, E.V., Reshetnikova, V.V., Vershinina, E.A., et al., Success of hand movement imagination depends on personality traits, brain asymmetry, and degree of handedness, Brain Sci., 2021, vol. 11, no. 7, p. 853.
doi: 10.3390/brainsci11070853
pubmed: 34202413
pmcid: 8301954
Reshetnikova, V.V., Bobrova, E.V., Vershinina, E.A., et al., Relationship between success in motor imagery of the right and left hands and users' personality traits, Neurosci. Behav. Physiol., 2022, vol. 6, p. 12.
Dornhege, G., Blankertz, B., Curio, G., et al., Increase information transfer rates in BCI by CSP extension to multi-class, NIPS, 2003, pp. 733–740.
Frolov, A., Husek, D., and Bobrov, P., Comparison of four classification methods for brain-computer interface, Neural Network World, 2011, vol. 21, no. 2, pp. 101–115.
doi: 10.14311/NNW.2011.21.007
Sporn, S., Hein, T., and Ruiz, M.H., Alterations in the amplitude and burst rate of beta oscillations impair reward-dependent motor learning in anxiety, Elife, 2020, vol. 9, p. e50654.
doi: 10.7554/eLife.50654
pubmed: 32423530
pmcid: 7237220