Dependence of Brain-Computer Interface Control Training on Personality Traits.

brain–computer interfaces imagination of flexion of the foot imagination of locomotion imagination of opening the hand learning to imagine movements personality traits

Journal

Doklady. Biochemistry and biophysics
ISSN: 1608-3091
Titre abrégé: Dokl Biochem Biophys
Pays: United States
ID NLM: 101126895

Informations de publication

Date de publication:
Dec 2022
Historique:
received: 17 05 2022
accepted: 11 08 2022
revised: 11 08 2022
entrez: 14 2 2023
pubmed: 15 2 2023
medline: 17 2 2023
Statut: ppublish

Résumé

Personality traits (PTs) are predictors of the success of control of brain-computer interfaces (BCIs); however, it is unknown how the PTs that are optimal for BCI control changes during training. The paper for the first time analyzes the correlations between PTs and the accuracy of the classification (AC) of brain states in imagining the movements of the hands, feet, and locomotion during 10-day training of ten volunteers in BCI control. In the first 3 days of training, the AC is higher for more stressed and anxious volunteers; in the last days, for calmer ones. In the middle of the training period, AC is higher in low-demonstrativeness persons, it is more pronounced when imagining foot movements. Correlations of low demonstrativeness, as well as of foresight and self-control with AC when imagining foot movements are revealed significantly more often than when imagining hand movements and locomotions. During almost the entire period of training, AC with locomotion imagination is higher in individualists. The results make it possible to propose individually-oriented recommendations for the use of BCI based on the imagination of movements for the rehabilitation of patients with motor disorders.

Identifiants

pubmed: 36786985
doi: 10.1134/S1607672922060035
pii: 10.1134/S1607672922060035
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

273-277

Informations de copyright

© 2022. Pleiades Publishing, Ltd.

Références

Jeunet, C., N’Kaoua, B., Subramanian, S., et al., Predicting mental imagery-based bci performance from personality, cognitive profile and neurophysiological patterns, PLoS One, 2015, vol. 10, no. 12, p. e0143962.
doi: 10.1371/journal.pone.0143962 pubmed: 26625261 pmcid: 4666487
Hammer, E.M., Kaufmann, T., Kleih, S.C., et al., Visuo-motor coordination ability predicts performance with brain-computer interfaces controlled by modulation of sensorimotor rhythms (SMR), Front. Hum. Neurosci., 2014, vol. 8, p. 574.
doi: 10.3389/fnhum.2014.00574 pubmed: 25147518 pmcid: 4123785
Vuckovic, A. and Osuagwu, B.A., Using a motor imagery questionnaire to estimate the performance of a brain-computer interface based on object-oriented motor imagery, Clin. Neurophysiol., 2013, vol. 124, no. 8, pp. 1586–1595.
doi: 10.1016/j.clinph.2013.02.016 pubmed: 23535455
Kubler, A., Nijboer, F., Mellinger, J., et al., Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface, Neurology, 2005, vol. 64, no. 10, pp. 1775–1777.
doi: 10.1212/01.WNL.0000158616.43002.6D pubmed: 15911809
Hagedorn, L.J., Leeuwis, N., and Alimardani, M., Prediction of inefficient BCI users based on cognitive skills and personality traits, bioRxiv, 2021, p. 461955.
Leeuwis, N., Paas, A., and Alimardani, M., Vividness of visual imagery and personality impact motor-imagery brain computer interfaces, Front. Hum. Neurosci., 2021, vol. 15, p. 634748.
doi: 10.3389/fnhum.2021.634748 pubmed: 33889080 pmcid: 8055841
Nijboer, F., Birbaumer, N., and Kubler, A., The influence of psychological state and motivation on brain-computer interface performance in patients with amyotrophic lateral sclerosis—a longitudinal study, Front. Neurosci., 2010, vol. 4, p. 55.
pubmed: 20700521 pmcid: 2916671
Witte, M., Kober, S.E., Ninaus, M., et al., Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training, Front. Hum. Neurosci., 2013, vol. 7, p. 478.
doi: 10.3389/fnhum.2013.00478 pubmed: 23966933 pmcid: 3744034
Zapala, D., Malkiewicz, M., Francuz, P., et al., Temperament predictors of motor imagery control in BCI, J. Psychophysiol., 2019, vol. 34, no. 4, pp. 246–254.
doi: 10.1027/0269-8803/a000252
Ahn, M., Ahn, S., Hong, J.H., et al., Gamma band activity associated with BCI performance: simultaneous MEG/EEG study, Front. Hum. Neurosci., 2013, vol. 7, p. 848.
doi: 10.3389/fnhum.2013.00848 pubmed: 24367322 pmcid: 3853408
Bamdadian, A., Guan, C., Ang, K.K., et al., The predictive role of pre-cue EEG rhythms on MI-based BCI classification performance, J. Neurosci. Methods, 2014, vol. 235, pp. 138–144.
doi: 10.1016/j.jneumeth.2014.06.011 pubmed: 24979726
Grosse-Wentrup, M. and Schölkopf, B., High gamma-power predicts performance in sensorimotor-rhythm brain-computer interfaces, J. Neural Eng., 2012, vol. 9, no. 4, p. 6046001.
doi: 10.1088/1741-2560/9/4/046001
Bobrova, E.V., Reshetnikova, V.V., Vershinina, E.A., et al., Interhemispheric asymmetry and personality traits of brain-computer interface users in hand movement imagination, Dokl. Biol. Sci., 2020, vol. 495, pp. 265–267.
doi: 10.1134/S0012496620060010 pubmed: 33486660
Bobrova, E.V., Reshetnikova, V.V., Vershinina, E.A., et al., Success of hand movement imagination depends on personality traits, brain asymmetry, and degree of handedness, Brain Sci., 2021, vol. 11, no. 7, p. 853.
doi: 10.3390/brainsci11070853 pubmed: 34202413 pmcid: 8301954
Reshetnikova, V.V., Bobrova, E.V., Vershinina, E.A., et al., Relationship between success in motor imagery of the right and left hands and users' personality traits, Neurosci. Behav. Physiol., 2022, vol. 6, p. 12.
Dornhege, G., Blankertz, B., Curio, G., et al., Increase information transfer rates in BCI by CSP extension to multi-class, NIPS, 2003, pp. 733–740.
Frolov, A., Husek, D., and Bobrov, P., Comparison of four classification methods for brain-computer interface, Neural Network World, 2011, vol. 21, no. 2, pp. 101–115.
doi: 10.14311/NNW.2011.21.007
Sporn, S., Hein, T., and Ruiz, M.H., Alterations in the amplitude and burst rate of beta oscillations impair reward-dependent motor learning in anxiety, Elife, 2020, vol. 9, p. e50654.
doi: 10.7554/eLife.50654 pubmed: 32423530 pmcid: 7237220

Auteurs

E V Bobrova (EV)

Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.

V V Reshetnikova (VV)

Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.

E A Vershinina (EA)

Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.

A A Grishin (AA)

Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia. agrishin@infran.ru.

M R Isaev (MR)

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
Institute of Translational Medicine, Russian National Research Medical University, Moscow, Russia.

P D Bobrov (PD)

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
Institute of Translational Medicine, Russian National Research Medical University, Moscow, Russia.

Yu P Gerasimenko (YP)

Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH