Intracellular lifestyle of Chlamydia trachomatis and host-pathogen interactions.
Journal
Nature reviews. Microbiology
ISSN: 1740-1534
Titre abrégé: Nat Rev Microbiol
Pays: England
ID NLM: 101190261
Informations de publication
Date de publication:
07 2023
07 2023
Historique:
accepted:
23
01
2023
medline:
16
6
2023
pubmed:
15
2
2023
entrez:
14
2
2023
Statut:
ppublish
Résumé
In recent years, substantial progress has been made in the understanding of the intracellular lifestyle of Chlamydia trachomatis and how the bacteria establish themselves in the human host. As an obligate intracellular pathogenic bacterium with a strongly reduced coding capacity, C. trachomatis depends on the provision of nutrients from the host cell. In this Review, we summarize the current understanding of how C. trachomatis establishes its intracellular replication niche, how its metabolism functions in the host cell, how it can defend itself against the cell autonomous and innate immune response and how it overcomes adverse situations through the transition to a persistent state. In particular, we focus on those processes for which a mechanistic understanding has been achieved.
Identifiants
pubmed: 36788308
doi: 10.1038/s41579-023-00860-y
pii: 10.1038/s41579-023-00860-y
doi:
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
448-462Informations de copyright
© 2023. Springer Nature Limited.
Références
Zhong, G. Chlamydia overcomes multiple gastrointestinal barriers to achieve long-lasting colonization. Trends Microbiol. 29, 1004–1012 (2021).
pubmed: 33865675
pmcid: 8510992
doi: 10.1016/j.tim.2021.03.011
Dzakah, E. E. et al. Chlamydia trachomatis stimulation enhances HIV-1 susceptibility through the modulation of a member of the macrophage inflammatory proteins. J. Invest. Dermatol. 142, 1338–1348.e6 (2022).
pubmed: 34662561
doi: 10.1016/j.jid.2021.09.020
Paavonen, J., Turzanski Fortner, R., Lehtinen, M. & Idahl, A. Chlamydia trachomatis, pelvic inflammatory disease, and epithelial ovarian cancer. J. Infect. Dis. 224, S121–S127 (2021).
pubmed: 34396414
doi: 10.1093/infdis/jiab017
Yang, X. et al. Chlamydia trachomatis infection: their potential implication in the etiology of cervical cancer. J. Cancer 12, 4891–4900 (2021).
pubmed: 34234859
pmcid: 8247366
doi: 10.7150/jca.58582
Chen, H., Wen, Y. & Li, Z. Clear victory for chlamydia: the subversion of host innate immunity. Front. Microbiol. 10, 1412 (2019).
pubmed: 31333596
pmcid: 6619438
doi: 10.3389/fmicb.2019.01412
Zhang, J. P. & Stephens, R. S. Mechanism of C. trachomatis attachment to eukaryotic host cells. Cell 69, 861–869 (1992).
pubmed: 1591780
doi: 10.1016/0092-8674(92)90296-O
Elwell, C., Mirrashidi, K. & Engel, J. Chlamydia cell biology and pathogenesis. Nat. Rev. Microbiol. 14, 385–400 (2016). This review summarizes the chlamydial effector proteins and how Chlamydia spp. interact with their hosts.
pubmed: 27108705
pmcid: 4886739
doi: 10.1038/nrmicro.2016.30
Su, H. et al. A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Proc. Natl Acad. Sci. USA 93, 11143–11148 (1996).
pubmed: 8855323
pmcid: 38298
doi: 10.1073/pnas.93.20.11143
Fadel, S. & Eley, A. Differential glycosaminoglycan binding of Chlamydia trachomatis OmcB protein from serovars E and LGV. J. Med. Microbiol. 57, 1058–1061 (2008).
pubmed: 18719173
doi: 10.1099/jmm.0.2008/001305-0
Kim, J. H., Jiang, S., Elwell, C. A. & Engel, J. N. Chlamydia trachomatis co-opts the FGF2 signaling pathway to enhance infection. PLoS Pathog. 7, e1002285 (2011).
pubmed: 21998584
pmcid: 3188521
doi: 10.1371/journal.ppat.1002285
Becker, E. & Hegemann, J. H. All subtypes of the Pmp adhesin family are implicated in chlamydial virulence and show species-specific function. Microbiologyopen 3, 544–556 (2014).
pubmed: 24985494
pmcid: 4287181
doi: 10.1002/mbo3.186
Abromaitis, S. & Stephens, R. S. Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase. PLoS Pathog. 5, e1000357 (2009).
pubmed: 19343202
pmcid: 2655716
doi: 10.1371/journal.ppat.1000357
Subbarayal, P. et al. EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis. PLoS Pathog. 11, e1004846 (2015).
pubmed: 25906164
pmcid: 4408118
doi: 10.1371/journal.ppat.1004846
Patel, A. L. et al. Activation of epidermal growth factor receptor is required for Chlamydia trachomatis development. BMC Microbiol. 14, 277–277 (2014).
pubmed: 25471819
pmcid: 4269859
doi: 10.1186/s12866-014-0277-4
Wyrick, P. B. et al. Entry of genital Chlamydia trachomatis into polarized human epithelial cells. Infect. Immun. 57, 2378–2389 (1989).
pubmed: 2744852
pmcid: 313458
doi: 10.1128/iai.57.8.2378-2389.1989
Majeed, M. & Kihlström, E. Mobilization of F-actin and clathrin during redistribution of Chlamydia trachomatis to an intracellular site in eucaryotic cells. Infect. Immun. 59, 4465–4472 (1991).
pubmed: 1937805
pmcid: 259064
doi: 10.1128/iai.59.12.4465-4472.1991
Webley, W. C., Norkin, L. C. & Stuart, E. S. Caveolin-2 associates with intracellular chlamydial inclusions independently of caveolin-1. BMC Infect. Dis. 4, 23 (2004).
pubmed: 15271223
pmcid: 497042
doi: 10.1186/1471-2334-4-23
Gabel, B. R., Elwell, C., van Ijzendoorn, S. C. & Engel, J. N. Lipid raft-mediated entry is not required for Chlamydia trachomatis infection of cultured epithelial cells. Infect. Immun. 72, 7367–7373 (2004).
pubmed: 15557670
pmcid: 529103
doi: 10.1128/IAI.72.12.7367-7373.2004
Ford, C., Nans, A., Boucrot, E. & Hayward, R. D. Chlamydia exploits filopodial capture and a macropinocytosis-like pathway for host cell entry. PLoS Pathog. 14, e1007051 (2018).
pubmed: 29727463
pmcid: 5955597
doi: 10.1371/journal.ppat.1007051
Jewett, T. J., Fischer, E. R., Mead, D. J. & Hackstadt, T. Chlamydial TARP is a bacterial nucleator of actin. Proc. Natl Acad. Sci. USA 103, 15599–15604 (2006). This study shows interaction of TarP with actin and provides insight into the regulation of actin dynamics by TarP.
pubmed: 17028176
pmcid: 1622868
doi: 10.1073/pnas.0603044103
Hower, S., Wolf, K. & Fields, K. A. Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Mol. Microbiol. 72, 1423–1437 (2009).
pubmed: 19460098
doi: 10.1111/j.1365-2958.2009.06732.x
Thalmann, J. et al. Actin re-organization induced by Chlamydia trachomatis serovar D — evidence for a critical role of the effector protein CT166 targeting Rac. PLoS ONE 5, e9887 (2010).
pubmed: 20360858
pmcid: 2845625
doi: 10.1371/journal.pone.0009887
Keb, G. et al. Chlamydia trachomatis TmeA directly activates N-WASP to promote actin polymerization and functions synergistically with TarP during invasion. mBio 12, e02861-20 (2021).
pubmed: 33468693
pmcid: 7845632
doi: 10.1128/mBio.02861-20
Faris, R., McCullough, A., Andersen, S. E., Moninger, T. O. & Weber, M. M. The Chlamydia trachomatis secreted effector TmeA hijacks the N-WASP-ARP2/3 actin remodeling axis to facilitate cellular invasion. PLoS Pathog. 16, e1008878 (2020).
pubmed: 32946535
pmcid: 7526919
doi: 10.1371/journal.ppat.1008878
Chen, Y. S. et al. The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling. PLoS Pathog. 10, e1003954 (2014). This study provides a model of the regulation and function of early T3SS effectors to establish the chlamydial inclusion.
pubmed: 24586162
pmcid: 3930595
doi: 10.1371/journal.ppat.1003954
Stallmann, S. & Hegemann, J. H. The Chlamydia trachomatis Ctad1 invasin exploits the human integrin β1 receptor for host cell entry. Cell Microbiol. 18, 761–775 (2016).
pubmed: 26597572
doi: 10.1111/cmi.12549
Omsland, A., Sager, J., Nair, V., Sturdevant, D. E. & Hackstadt, T. Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium. Proc. Natl Acad. Sci. USA 109, 19781–19785 (2012). This study reveals G6P and ATP as different energy sources for elementary bodies and reticulate bodies, respectively, in axenic medium.
pubmed: 23129646
pmcid: 3511728
doi: 10.1073/pnas.1212831109
Haider, S. et al. Raman microspectroscopy reveals long-term extracellular activity of Chlamydiae. Mol. Microbiol. 77, 687–700 (2010).
pubmed: 20545842
doi: 10.1111/j.1365-2958.2010.07241.x
Rajeeve, K. et al. Reprogramming of host glutamine metabolism during Chlamydia trachomatis infection and its key role in peptidoglycan synthesis. Nat. Microbiol. 5, 1390–1402 (2020). This study is the first to show that glutamine is a central metabolite for cell wall biosynthesis, and that host cell glutamine metabolic reprogramming is required for chlamydial development.
pubmed: 32747796
doi: 10.1038/s41564-020-0762-5
Liechti, G. W. et al. A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506, 507–510 (2014). This study is the first to show that C. trachomatis has peptidoglycan using click chemistry.
pubmed: 24336210
doi: 10.1038/nature12892
Jacquier, N., Viollier, P. H. & Greub, G. The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol. Rev. 39, 262–275 (2015).
pubmed: 25670734
doi: 10.1093/femsre/fuv001
Ouellette, S. P., Lee, J. & Cox, J. V. Division without binary fission: cell division in the FtsZ-less Chlamydia. J. Bacteriol. 202, e00252-20 (2020).
pubmed: 32540934
pmcid: 7417837
doi: 10.1128/JB.00252-20
Barry, C. E. III, Hayes, S. F. & Hackstadt, T. Nucleoid condensation in Escherichia coli that express a chlamydial histone homolog. Science 256, 377–379 (1992).
pubmed: 1566085
doi: 10.1126/science.256.5055.377
Hackstadt, T., Baehr, W. & Ying, Y. Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone H1. Proc. Natl Acad. Sci. USA 88, 3937–3941 (1991).
pubmed: 2023942
pmcid: 51568
doi: 10.1073/pnas.88.9.3937
Pedersen, L. B., Birkelund, S. & Christiansen, G. Interaction of the Chlamydia trachomatis histone H1-like protein (Hc1) with DNA and RNA causes repression of transcription and translation in vitro. Mol. Microbiol. 11, 1085–1098 (1994).
pubmed: 7517487
doi: 10.1111/j.1365-2958.1994.tb00385.x
Grieshaber, N. A. et al. Identification of the base-pairing requirements for repression of hctA translation by the small RNA IhtA leads to the discovery of a new mRNA target in Chlamydia trachomatis. PLoS ONE 10, e0116593 (2015).
pubmed: 25756658
pmcid: 4355289
doi: 10.1371/journal.pone.0116593
Christensen, S., McMahon, R. M., Martin, J. L. & Huston, W. M. Life inside and out: making and breaking protein disulfide bonds in Chlamydia. Crit. Rev. Microbiol. 45, 33–50 (2019).
pubmed: 30663449
doi: 10.1080/1040841X.2018.1538933
Wilson, D. P., Whittum-Hudson, J. A., Timms, P. & Bavoil, P. M. Kinematics of intracellular chlamydiae provide evidence for contact-dependent development. J. Bacteriol. 191, 5734–5742 (2009).
pubmed: 19542292
pmcid: 2737980
doi: 10.1128/JB.00293-09
Rank, R. G., Whittimore, J., Bowlin, A. K. & Wyrick, P. B. In vivo ultrastructural analysis of the intimate relationship between polymorphonuclear leukocytes and the chlamydial developmental cycle. Infect. Immun. 79, 3291–3301 (2011). This study uses a mouse model with C. muridarum infection to show that PMNs can invade Chlamydia-infected epithelial cells in vivo and dislodge those cells from the epithelium despite their phagocytic and NETotic properties.
pubmed: 21576327
pmcid: 3147583
doi: 10.1128/IAI.00200-11
Lee, J. K. et al. Replication-dependent size reduction precedes differentiation in Chlamydia trachomatis. Nat. Commun. 9, 45 (2018). This study provides evidence that reticulate body size regulates the timing of the reticulate body to elementary body conversion.
pubmed: 29298975
pmcid: 5752669
doi: 10.1038/s41467-017-02432-0
Pal, R. R. et al. Pathogenic E. coli extracts nutrients from infected host cells utilizing injectisome components. Cell 177, 683–696.e18 (2019).
pubmed: 30929902
doi: 10.1016/j.cell.2019.02.022
Kumar, Y. & Valdivia, R. H. Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds. Cell Host Microbe 4, 159–169 (2008).
pubmed: 18692775
pmcid: 2605408
doi: 10.1016/j.chom.2008.05.018
Bastidas, R. J., Elwell, C. A., Engel, J. N. & Valdivia, R. H. Chlamydial intracellular survival strategies. Cold Spring Harb. Perspect. Med. 3, a010256 (2013).
pubmed: 23637308
pmcid: 3633179
doi: 10.1101/cshperspect.a010256
Subtil, A. & Hayward, R. D. Protein Secretion in Chlamydia. in Chlamydia Biology: From Genome to Disease (eds Tan, M., Hegemann, J. H. & Sütterlin, C.) 151–176 (Caister Academic, 2020).
Scidmore, M. A., Rockey, D. D., Fischer, E. R., Heinzen, R. A. & Hackstadt, T. Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry. Infect. Immun. 64, 5366–5372 (1996).
pubmed: 8945589
pmcid: 174531
doi: 10.1128/iai.64.12.5366-5372.1996
Scidmore, M. A., Fischer, E. R. & Hackstadt, T. Restricted fusion of Chlamydia trachomatis vesicles with endocytic compartments during the initial stages of infection. Infect. Immun. 71, 973–984 (2003).
pubmed: 12540580
pmcid: 145390
doi: 10.1128/IAI.71.2.973-984.2003
van Ooij, C., Apodaca, G. & Engel, J. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells. Infect. Immun. 65, 758–766 (1997).
pubmed: 9009339
pmcid: 176122
doi: 10.1128/iai.65.2.758-766.1997
Weber, M. M. et al. A functional core of IncA is required for Chlamydia trachomatis inclusion fusion. J. Bacteriol. 198, 1347–1355 (2016).
pubmed: 26883826
pmcid: 4859576
doi: 10.1128/JB.00933-15
Ronzone, E. et al. An α-helical core encodes the dual functions of the chlamydial protein IncA. J. Biol. Chem. 289, 33469–33480 (2014).
pubmed: 25324548
pmcid: 4246101
doi: 10.1074/jbc.M114.592063
Geisler, W. M., Suchland, R. J., Rockey, D. D. & Stamm, W. E. Epidemiology and clinical manifestations of unique Chlamydia trachomatis isolates that occupy nonfusogenic inclusions. J. Infect. Dis. 184, 879–884 (2001).
pubmed: 11528595
doi: 10.1086/323340
Derre, I., Swiss, R. & Agaisse, H. The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER–Chlamydia inclusion membrane contact sites. PLoS Pathog. 7, e1002092 (2011).
pubmed: 21731489
pmcid: 3121800
doi: 10.1371/journal.ppat.1002092
Stanhope, R., Flora, E., Bayne, C. & Derre, I. IncV, a FFAT motif-containing Chlamydia protein, tethers the endoplasmic reticulum to the pathogen-containing vacuole. Proc. Natl Acad. Sci. USA 114, 12039–12044 (2017).
pubmed: 29078338
pmcid: 5692559
doi: 10.1073/pnas.1709060114
Goetz, R. et al. Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy. Nat. Commun. 11, 6173 (2020).
doi: 10.1038/s41467-020-19897-1
Matsumoto, A. Isolation and electron microscopic observations of intracytoplasmic inclusions containing Chlamydia psittaci. J. Bacteriol. 145, 605–612 (1981).
pubmed: 6257643
pmcid: 217310
doi: 10.1128/jb.145.1.605-612.1981
Mirrashidi, K. M. et al. Global mapping of the Inc-human interactome reveals that retromer restricts Chlamydia infection. Cell Host Microbe 18, 109–121 (2015). This study reports the first large-scale interaction screen of chlamydial Incs and host proteins.
pubmed: 26118995
pmcid: 4540348
doi: 10.1016/j.chom.2015.06.004
Stephens, R. S. et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759 (1998).
pubmed: 9784136
doi: 10.1126/science.282.5389.754
Schwoppe, C., Winkler, H. H. & Neuhaus, H. E. Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). J. Bacteriol. 184, 2108–2115 (2002).
pubmed: 11914341
pmcid: 134969
doi: 10.1128/JB.184.8.2108-2115.2002
Gehre, L. et al. Sequestration of host metabolism by an intracellular pathogen. eLife 5, e12552 (2016). This study provides the first evidence that chlamydial enzymes orchestrating glycogen metabolism are secreted into the vacuole lumen through type III secretion.
pubmed: 26981769
pmcid: 4829429
doi: 10.7554/eLife.12552
Weiss, E. Transaminase activity and other enzymatic reactions involving pyruvate and glutamate in Chlamydia (psittacosis–trachoma group). J. Bacteriol. 93, 177–184 (1967).
pubmed: 6020405
pmcid: 314986
doi: 10.1128/jb.93.1.177-184.1967
Mehlitz, A. et al. Metabolic adaptation of Chlamydia trachomatis to mammalian host cells. Mol. Microbiol. 103, 1004–1019 (2017).
pubmed: 27997721
doi: 10.1111/mmi.13603
Hackstadt, T., Rockey, D. D., Heinzen, R. A. & Scidmore, M. A. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J. 15, 964–977 (1996).
pubmed: 8605892
pmcid: 449991
doi: 10.1002/j.1460-2075.1996.tb00433.x
Carabeo, R. A., Mead, D. J. & Hackstadt, T. Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc. Natl Acad. Sci. USA 100, 6771–6776 (2003).
pubmed: 12743366
pmcid: 164522
doi: 10.1073/pnas.1131289100
Wylie, J. L., Hatch, G. M. & McClarty, G. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J. Bacteriol. 179, 7233–7242 (1997).
pubmed: 9393685
pmcid: 179671
doi: 10.1128/jb.179.23.7233-7242.1997
Heuer, D. et al. Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457, 731–735 (2009).
pubmed: 19060882
doi: 10.1038/nature07578
Beatty, W. L. Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis. J. Cell Sci. 119, 350–359 (2006).
pubmed: 16410552
doi: 10.1242/jcs.02733
Cocchiaro, J. L., Kumar, Y., Fischer, E. R., Hackstadt, T. & Valdivia, R. H. Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc. Natl Acad. Sci. USA 105, 9379–9384 (2008).
pubmed: 18591669
pmcid: 2453745
doi: 10.1073/pnas.0712241105
Pokorzynski, N. D., Thompson, C. C. & Carabeo, R. A. Ironing out the unconventional mechanisms of iron acquisition and gene regulation in Chlamydia. Front. Cell Infect. Microbiol. 7, 394 (2017).
pubmed: 28951853
pmcid: 5599777
doi: 10.3389/fcimb.2017.00394
Rother, M. et al. Combined human genome-wide RNAi and metabolite analyses identify IMPDH as a host-directed target against Chlamydia infection. Cell Host Microbe 23, 661–671.e8 (2018). The study reports the first human genome-wide RNA interference screen to identify host factors required for chlamydial growth.
pubmed: 29706504
doi: 10.1016/j.chom.2018.04.002
Asgari, Y., Zabihinpour, Z., Salehzadeh-Yazdi, A., Schreiber, F. & Masoudi-Nejad, A. Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation. Genomics 105, 275–281 (2015).
pubmed: 25773945
doi: 10.1016/j.ygeno.2015.03.001
Gonzalez, E. et al. Chlamydia infection depends on a functional MDM2–p53 axis. Nat. Commun. 5, 5201 (2014).
pubmed: 25392082
doi: 10.1038/ncomms6201
Siegl, C., Prusty, B. K., Karunakaran, K., Wischhusen, J. & Rudel, T. Tumor suppressor p53 alters host cell metabolism to limit Chlamydia trachomatis infection. Cell Rep. 9, 918–929 (2014).
pubmed: 25437549
doi: 10.1016/j.celrep.2014.10.004
Chowdhury, S. R. et al. Chlamydia preserves the mitochondrial network necessary for replication via microRNA-dependent inhibition of fission. J. Cell Biol. 216, 1071–1089 (2017).
pubmed: 28330939
pmcid: 5379946
doi: 10.1083/jcb.201608063
Sarin, M. et al. Alterations in c-Myc phenotypes resulting from dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. Cell Death Dis. 4, e670 (2013).
pubmed: 23764851
pmcid: 3702284
doi: 10.1038/cddis.2013.201
Frank, S. et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515–525 (2001).
pubmed: 11703942
doi: 10.1016/S1534-5807(01)00055-7
Finethy, R. & Coers, J. Sensing the enemy, containing the threat: cell-autonomous immunity to Chlamydia trachomatis. FEMS Microbiol. Rev. 40, 875–893 (2016).
pubmed: 28201690
pmcid: 5975928
doi: 10.1093/femsre/fuw027
Darville, T. et al. Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J. Immunol. 171, 6187–6197 (2003).
pubmed: 14634135
doi: 10.4049/jimmunol.171.11.6187
O’Connell, C. M., Ionova, I. A., Quayle, A. J., Visintin, A. & Ingalls, R. R. Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions. Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. J. Biol. Chem. 281, 1652–1659 (2006).
pubmed: 16293622
doi: 10.1074/jbc.M510182200
Bas, S. et al. The proinflammatory cytokine response to Chlamydia trachomatis elementary bodies in human macrophages is partly mediated by a lipoprotein, the macrophage infectivity potentiator, through TLR2/TLR1/TLR6 and CD14. J. Immunol. 180, 1158–1168 (2008).
pubmed: 18178856
doi: 10.4049/jimmunol.180.2.1158
Massari, P., Toussi, D. N., Tifrea, D. F. & de la Maza, L. M. Toll-like receptor 2-dependent activity of native major outer membrane protein proteosomes of Chlamydia trachomatis. Infect. Immun. 81, 303–310 (2013).
pubmed: 23132491
pmcid: 3536141
doi: 10.1128/IAI.01062-12
Wang, Y. et al. Chlamydial lipoproteins stimulate toll-like receptors 1/2 mediated inflammatory responses through MyD88-dependent pathway. Front. Microbiol. 8, 78 (2017).
pubmed: 28184217
pmcid: 5266682
doi: 10.3389/fcimb.2018.00078
Bulut, Y. et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J. Immunol. 168, 1435–1440 (2002).
pubmed: 11801686
doi: 10.4049/jimmunol.168.3.1435
Vabulas, R. M. et al. Endocytosed HSP60s use Toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem. 276, 31332–31339 (2001).
pubmed: 11402040
doi: 10.1074/jbc.M103217200
Yang, C. et al. Chlamydia trachomatis lipopolysaccharide evades the canonical and noncanonical inflammatory pathways to subvert innate immunity. mBio 10, e00595-19 (2019).
pubmed: 31015326
pmcid: 6479002
doi: 10.1128/mBio.00595-19
Rund, S., Lindner, B., Brade, H. & Holst, O. Structural analysis of the lipopolysaccharide from Chlamydia trachomatis serotype L2. J. Biol. Chem. 274, 16819–16824 (1999).
pubmed: 10358025
doi: 10.1074/jbc.274.24.16819
Zhou, H. et al. PORF5 plasmid protein of Chlamydia trachomatis induces MAPK-mediated pro-inflammatory cytokines via TLR2 activation in THP-1 cells. Sci. China Life Sci. 56, 460–466 (2013).
pubmed: 23546865
doi: 10.1007/s11427-013-4470-8
Sun, Z. et al. Chlamydia trachomatis glycogen synthase promotes MAPK-mediated proinflammatory cytokine production via TLR2/TLR4 in THP-1 cells. Life Sci. 271, 119181 (2021).
pubmed: 33581128
doi: 10.1016/j.lfs.2021.119181
Zhang, Y. et al. The DNA sensor, cyclic GMP–AMP synthase, is essential for induction of IFN-β during Chlamydia trachomatis infection. J. Immunol. 193, 2394–2404 (2014).
pubmed: 25070851
doi: 10.4049/jimmunol.1302718
Barker, J. R. et al. STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. mBio 4, e00018-13 (2013).
pubmed: 23631912
pmcid: 3663186
doi: 10.1128/mBio.00018-13
Fields, K. A. & Hackstadt, T. The chlamydial inclusion: escape from the endocytic pathway. Annu. Rev. Cell Dev. Biol. 18, 221–245 (2002).
pubmed: 12142274
doi: 10.1146/annurev.cellbio.18.012502.105845
Damiani, M. T., Gambarte Tudela, J. & Capmany, A. Targeting eukaryotic Rab proteins: a smart strategy for chlamydial survival and replication. Cell Microbiol. 16, 1329–1338 (2014).
pubmed: 24948448
doi: 10.1111/cmi.12325
Haldar, A. K. et al. Chlamydia trachomatis is resistant to inclusion ubiquitination and associated host defense in γ interferon-primed human epithelial cells. mBio 7, e01417-16 (2016).
pubmed: 27965446
pmcid: 5156299
doi: 10.1128/mBio.01417-16
Al-Younes, H. M., Brinkmann, V. & Meyer, T. F. Interaction of Chlamydia trachomatis serovar L2 with the host autophagic pathway. Infect. Immun. 72, 4751–4762 (2004).
pubmed: 15271937
pmcid: 470602
doi: 10.1128/IAI.72.8.4751-4762.2004
Auer, D., Huegelschaeffer, S. D., Fischer, A. B. & Rudel, T. The chlamydial deubiquitinase Cdu1 supports recruitment of Golgi vesicles to the inclusion. Cell Microbiol. 22, e13136 (2020).
pubmed: 31677225
doi: 10.1111/cmi.13136
Weber, M. M. et al. Absence of specific Chlamydia trachomatis inclusion membrane proteins triggers premature inclusion membrane lysis and host cell death. Cell Rep. 19, 1406–1417 (2017).
pubmed: 28514660
pmcid: 5499683
doi: 10.1016/j.celrep.2017.04.058
Boehme, L., Albrecht, M., Riede, O. & Rudel, T. Chlamydia trachomatis-infected host cells resist dsRNA-induced apoptosis. Cell Microbiol. 12, 1340–1351 (2010).
doi: 10.1111/j.1462-5822.2010.01473.x
Fan, T. et al. Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J. Exp. Med. 187, 487–496 (1998).
pubmed: 9463399
pmcid: 2212145
doi: 10.1084/jem.187.4.487
Greene, W., Xiao, Y., Huang, Y., McClarty, G. & Zhong, G. Chlamydia-infected cells continue to undergo mitosis and resist induction of apoptosis. Infect. Immun. 72, 451–460 (2004).
pubmed: 14688126
pmcid: 343958
doi: 10.1128/IAI.72.1.451-460.2004
Zhong, Y., Weininger, M., Pirbhai, M., Dong, F. & Zhong, G. Inhibition of staurosporine-induced activation of the proapoptotic multidomain Bcl-2 proteins Bax and Bak by three invasive chlamydial species. J. Infect. 53, 408–414 (2006).
pubmed: 16490255
doi: 10.1016/j.jinf.2005.12.028
Ying, S. et al. Premature apoptosis of Chlamydia-infected cells disrupts chlamydial development. J. Infect. Dis. 198, 1536–1544 (2008).
pubmed: 18821848
doi: 10.1086/592755
Sixt, B. S., Nunez-Otero, C., Kepp, O., Valdivia, R. H. & Kroemer, G. Chlamydia trachomatis fails to protect its growth niche against pro-apoptotic insults. Cell Death Differ. 26, 1485–1500 (2019).
pubmed: 30375511
doi: 10.1038/s41418-018-0224-2
Sharma, M. & Rudel, T. Apoptosis resistance in Chlamydia-infected cells: a fate worse than death? FEMS Immunol. Med. Microbiol. 55, 154–161 (2009).
pubmed: 19281566
doi: 10.1111/j.1574-695X.2008.00515.x
Verbeke, P. et al. Recruitment of BAD by the Chlamydia trachomatis vacuole correlates with host-cell survival. PLoS Pathog. 2, e45 (2006).
pubmed: 16710454
pmcid: 1463014
doi: 10.1371/journal.ppat.0020045
Scidmore, M. A. & Hackstadt, T. Mammalian 14-3-3β associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG. Mol. Microbiol. 39, 1638–1650 (2001).
pubmed: 11260479
doi: 10.1046/j.1365-2958.2001.02355.x
Rajalingam, K. et al. Mcl-1 is a key regulator of apoptosis resistance in Chlamydia trachomatis-infected cells. PLoS ONE 3, e3102 (2008).
pubmed: 18769617
pmcid: 2518856
doi: 10.1371/journal.pone.0003102
Fischer, A. et al. Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense. eLife 6, e21465 (2017).
pubmed: 28347402
pmcid: 5370187
doi: 10.7554/eLife.21465
Kun, D., Xiang-Lin, C., Ming, Z. & Qi, L. Chlamydia inhibit host cell apoptosis by inducing Bag-1 via the MAPK/ERK survival pathway. Apoptosis 18, 1083–1092 (2013).
pubmed: 23708800
doi: 10.1007/s10495-013-0865-z
Waguia Kontchou, C. et al. Chlamydia trachomatis inhibits apoptosis in infected cells by targeting the pro-apoptotic proteins Bax and Bak. Cell Death Differ. 29, 2046–2059 (2022).
pubmed: 35397654
pmcid: 9525694
doi: 10.1038/s41418-022-00995-0
Luo, F. et al. Antiapoptotic activity of Chlamydia trachomatis Pgp3 protein involves activation of the ERK1/2 pathway mediated by upregulation of DJ-1 protein. Pathog. Dis. 77, ftaa003 (2019).
pubmed: 31971555
doi: 10.1093/femspd/ftaa003
Sixt, B. S. et al. The Chlamydia trachomatis inclusion membrane protein CpoS counteracts STING-mediated cellular surveillance and suicide programs. Cell Host Microbe 21, 113–121 (2017). This study reveals the importance of the chlamydial protein CpoS to prevent cell death induced via the STING pathway.
pubmed: 28041929
doi: 10.1016/j.chom.2016.12.002
Webster, S. J. et al. Detection of a microbial metabolite by STING regulates inflammasome activation in response to Chlamydia trachomatis infection. PLoS Pathog. 13, e1006383 (2017).
pubmed: 28570638
pmcid: 5453623
doi: 10.1371/journal.ppat.1006383
Abdul-Sater, A. A., Koo, E., Hacker, G. & Ojcius, D. M. Inflammasome-dependent caspase-1 activation in cervical epithelial cells stimulates growth of the intracellular pathogen Chlamydia trachomatis. J. Biol. Chem. 284, 26789–26796 (2009).
pubmed: 19648107
pmcid: 2785367
doi: 10.1074/jbc.M109.026823
Kiviat, N. B. et al. Histopathology of endocervical infection caused by Chlamydia trachomatis, herpes simplex virus, Trichomonas vaginalis, and Neisseria gonorrhoeae. Hum. Pathol. 21, 831–837 (1990).
pubmed: 2387574
doi: 10.1016/0046-8177(90)90052-7
Tauber, A. I., Pavlotsky, N., Lin, J. S. & Rice, P. A. Inhibition of human neutrophil NADPH oxidase by Chlamydia serovars E, K, and L2. Infect. Immun. 57, 1108–1112 (1989).
pubmed: 2538397
pmcid: 313237
doi: 10.1128/iai.57.4.1108-1112.1989
Tosi, M. F. & Hammerschlag, M. R. Chlamydia trachomatis selectively stimulates myeloperoxidase release but not superoxide production by human neutrophils. J. Infect. Dis. 158, 457–460 (1988).
pubmed: 2841382
doi: 10.1093/infdis/158.2.457
Rajeeve, K., Das, S., Prusty, B. K. & Rudel, T. Chlamydia trachomatis paralyses neutrophils to evade the host innate immune response. Nat. Microbiol. 3, 824–835 (2018). This study is the first to show that the secreted CPAF directly inactivates the anti-chlamydial response in neutrophils.
pubmed: 29946164
doi: 10.1038/s41564-018-0182-y
Yang, C. et al. Chlamydia evasion of neutrophil host defense results in NLRP3 dependent myeloid-mediated sterile inflammation through the purinergic P2X7 receptor. Nat. Commun. 12, 5454 (2021).
pubmed: 34526512
pmcid: 8443728
doi: 10.1038/s41467-021-25749-3
Yong, E. C., Chi, E. Y., Chen, W. J. & Kuo, C. C. Degradation of Chlamydia trachomatis in human polymorphonuclear leukocytes: an ultrastructural study of peroxidase-positive phagolysosomes. Infect. Immun. 53, 427–431 (1986).
pubmed: 3015802
pmcid: 260893
doi: 10.1128/iai.53.2.427-431.1986
Yong, E. C., Klebanoff, S. J. & Kuo, C. C. Toxic effect of human polymorphonuclear leukocytes on Chlamydia trachomatis. Infect. Immun. 37, 422–426 (1982).
pubmed: 6288561
pmcid: 347550
doi: 10.1128/iai.37.2.422-426.1982
Register, K. B., Davis, C. H., Wyrick, P. B., Shafer, W. M. & Spitznagel, J. K. Nonoxidative antimicrobial effects of human polymorphonuclear leukocyte granule proteins on Chlamydia spp. in vitro. Infect. Immun. 55, 2420–2427 (1987).
pubmed: 3653985
pmcid: 260724
doi: 10.1128/iai.55.10.2420-2427.1987
Register, K. B., Morgan, P. A. & Wyrick, P. B. Interaction between Chlamydia spp. and human polymorphonuclear leukocytes in vitro. Infect. Immun. 52, 664–670 (1986). This is the first study showing that Chlamydia spp. can survive and remain infectious after neutrophil phagocytosis.
pubmed: 3710578
pmcid: 260908
doi: 10.1128/iai.52.3.664-670.1986
Patton, D. L. & Kuo, C. C. Histopathology of Chlamydia trachomatis salpingitis after primary and repeated reinfections in the monkey subcutaneous pocket model. J. Reprod. Fertil. 85, 647–656 (1989).
pubmed: 2704001
doi: 10.1530/jrf.0.0850647
Agrawal, T., Bhengraj, A. R., Vats, V., Salhan, S. & Mittal, A. Expression of TLR 2, TLR 4 and iNOS in cervical monocytes of Chlamydia trachomatis-infected women and their role in host immune response. Am. J. Reprod. Immunol. 66, 534–543 (2011).
pubmed: 21883620
doi: 10.1111/j.1600-0897.2011.01064.x
Lausen, M., Christiansen, G., Bouet Guldbaek Poulsen, T. & Birkelund, S. Immunobiology of monocytes and macrophages during Chlamydia trachomatis infection. Microbes Infect. 21, 73–84 (2019).
pubmed: 30528899
doi: 10.1016/j.micinf.2018.10.007
Zuck, M., Ellis, T., Venida, A. & Hybiske, K. Extrusions are phagocytosed and promote Chlamydia survival within macrophages. Cell Microbiol. 19, e12683 (2017).
doi: 10.1111/cmi.12683
Manor, E. & Sarov, I. Fate of Chlamydia trachomatis in human monocytes and monocyte-derived macrophages. Infect. Immun. 54, 90–95 (1986).
pubmed: 3759241
pmcid: 260121
doi: 10.1128/iai.54.1.90-95.1986
Yong, E. C., Chi, E. Y. & Kuo, C. C. Differential antimicrobial activity of human mononuclear phagocytes against the human biovars of Chlamydia trachomatis. J. Immunol. 139, 1297–1302 (1987).
pubmed: 3112229
doi: 10.4049/jimmunol.139.4.1297
Koehler, L. et al. Ultrastructural and molecular analyses of the persistence of Chlamydia trachomatis (serovar K) in human monocytes. Microb. Pathog. 22, 133–142 (1997).
pubmed: 9075216
doi: 10.1006/mpat.1996.0103
Bard, J. & Levitt, D. Chlamydia trachomatis (L2 serovar) binds to distinct subpopulations of human peripheral blood leukocytes. Clin. Immunol. Immunopathol. 38, 150–160 (1986).
pubmed: 3510101
doi: 10.1016/0090-1229(86)90134-0
Datta, B., Njau, F., Thalmann, J., Haller, H. & Wagner, A. D. Differential infection outcome of Chlamydia trachomatis in human blood monocytes and monocyte-derived dendritic cells. BMC Microbiol. 14, 209 (2014).
pubmed: 25123797
pmcid: 4236547
doi: 10.1186/s12866-014-0209-3
Hadfield, T. L., Lamy, Y. & Wear, D. J. Demonstration of Chlamydia trachomatis in inguinal lymphadenitis of lymphogranuloma venereum: a light microscopy, electron microscopy and polymerase chain reaction study. Mod. Pathol. 8, 924–929 (1995).
pubmed: 8751333
Yeung, A. T. Y. et al. Exploiting induced pluripotent stem cell-derived macrophages to unravel host factors influencing Chlamydia trachomatis pathogenesis. Nat. Commun. 8, 15013 (2017).
pubmed: 28440293
pmcid: 5414054
doi: 10.1038/ncomms15013
Tietzel, I., Quayle, A. J. & Carabeo, R. A. Alternatively activated macrophages are host cells for Chlamydia trachomatis and reverse anti-chlamydial classically activated macrophages. Front. Microbiol. 10, 919 (2019).
pubmed: 31134002
pmcid: 6524708
doi: 10.3389/fmicb.2019.00919
Yasir, M., Pachikara, N. D., Bao, X., Pan, Z. & Fan, H. Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles. Infect. Immun. 79, 4019–4028 (2011).
pubmed: 21807906
pmcid: 3187247
doi: 10.1128/IAI.05308-11
Sun, H. S. et al. Chlamydia trachomatis vacuole maturation in infected macrophages. J. Leukoc. Biol. 92, 815–827 (2012).
pubmed: 22807527
pmcid: 4050525
doi: 10.1189/jlb.0711336
Coutinho-Silva, R. et al. Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation. Immunity 19, 403–412 (2003).
pubmed: 14499115
doi: 10.1016/S1074-7613(03)00235-8
Al-Zeer, M. A., Al-Younes, H. M., Lauster, D., Abu Lubad, M. & Meyer, T. F. Autophagy restricts Chlamydia trachomatis growth in human macrophages via IFNγ-inducible guanylate binding proteins. Autophagy 9, 50–62 (2013).
pubmed: 23086406
pmcid: 3542218
doi: 10.4161/auto.22482
Abdul-Sater, A. A., Said-Sadier, N., Padilla, E. V. & Ojcius, D. M. Chlamydial infection of monocytes stimulates IL-1β secretion through activation of the NLRP3 inflammasome. Microbes Infect. 12, 652–661 (2010).
pubmed: 20434582
pmcid: 4074088
doi: 10.1016/j.micinf.2010.04.008
Xavier, A., Al-Zeer, M. A., Meyer, T. F. & Daumke, O. hGBP1 coordinates Chlamydia restriction and inflammasome activation through sequential GTP hydrolysis. Cell Rep. 31, 107667 (2020).
pubmed: 32433976
doi: 10.1016/j.celrep.2020.107667
Chen, B., Stout, R. & Campbell, W. F. Nitric oxide production: a mechanism of Chlamydia trachomatis inhibition in interferon-γ-treated RAW264.7 cells. FEMS Immunol. Med. Microbiol. 14, 109–120 (1996).
pubmed: 8809546
doi: 10.1111/j.1574-695X.1996.tb00277.x
Hogan, R. J., Mathews, S. A., Mukhopadhyay, S., Summersgill, J. T. & Timms, P. Chlamydial persistence: beyond the biphasic paradigm. Infect. Immun. 72, 1843–1855 (2004).
pubmed: 15039303
pmcid: 375192
doi: 10.1128/IAI.72.4.1843-1855.2004
Bavoil, P. M. What’s in a word: the use, misuse, and abuse of the word “persistence” in Chlamydia biology. Front. Cell Infect. Microbiol. 4, 27 (2014).
pubmed: 24624366
pmcid: 3940941
doi: 10.3389/fcimb.2014.00027
Muramatsu, M. K. et al. Beyond tryptophan synthase: identification of genes that contribute to Chlamydia trachomatis survival during γ interferon-induced persistence and reactivation. Infect. Immun. 84, 2791–2801 (2016).
pubmed: 27430273
pmcid: 5038056
doi: 10.1128/IAI.00356-16
Ouellette, S. P. et al. Global transcriptional upregulation in the absence of increased translation in Chlamydia during IFNγ-mediated host cell tryptophan starvation. Mol. Microbiol. 62, 1387–1401 (2006).
pubmed: 17059564
doi: 10.1111/j.1365-2958.2006.05465.x
Batteiger, B. E. Chlamydia infection and epidemiology. in Intracellular Pathogens I: Chlamydiales (eds. Tan, M. & Bavoil, P. M.) 1–26 (Wiley, 2012).
Schoborg, R. V. Chlamydia persistence — a tool to dissect chlamydia–host interactions. Microbes Infect. 13, 649–662 (2011).
pubmed: 21458583
pmcid: 3636554
doi: 10.1016/j.micinf.2011.03.004
Brockett, M. R., Liechti, G. W. & Roy, C. R. Persistence alters the interaction between Chlamydia trachomatis and its host cell. Infect. Immun. 89, e00685-20 (2021).
pubmed: 34001559
pmcid: 8281235
doi: 10.1128/IAI.00685-20
MacMicking, J. D. Interferon-inducible effector mechanisms in cell-autonomous immunity. Nat. Rev. Immunol. 12, 367–382 (2012).
pubmed: 22531325
pmcid: 4150610
doi: 10.1038/nri3210
Wyrick, P. B. Chlamydia trachomatis persistence in vitro: an overview. J. Infect. Dis. 201, S88–S95 (2010).
pubmed: 20470046
doi: 10.1086/652394
Raulston, J. E. Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Infect. Immun. 65, 4539–4547 (1997).
pubmed: 9353031
pmcid: 175652
doi: 10.1128/iai.65.11.4539-4547.1997
Tamura, A. & Manire, G. P. Effect of penicillin on the multiplication of meningopneumonitis organisms (Chlamydia psittaci). J. Bacteriol. 96, 875–880 (1968).
pubmed: 5686015
pmcid: 252392
doi: 10.1128/jb.96.4.875-880.1968
Panzetta, M. E., Valdivia, R. H. & Saka, H. A. Chlamydia persistence: a survival strategy to evade antimicrobial effects in-vitro and in-vivo. Front. Microbiol. 9, 3101 (2018).
pubmed: 30619180
pmcid: 6299033
doi: 10.3389/fmicb.2018.03101
Shima, K. et al. Regulation of the mitochondrion–fatty acid axis for the metabolic reprogramming of Chlamydia trachomatis during treatment with β-lactam antimicrobials. mBio 12, e00023-21 (2021).
pubmed: 33785629
pmcid: 8092193
doi: 10.1128/mBio.00023-21
Shima, K. et al. Interferon-γ interferes with host cell metabolism during intracellular Chlamydia trachomatis infection. Cytokine 112, 95–101 (2018).
pubmed: 29885991
doi: 10.1016/j.cyto.2018.05.039
Gerard, H. C. et al. Viability and gene expression in Chlamydia trachomatis during persistent infection of cultured human monocytes. Med. Microbiol. Immunol. 187, 115–120 (1998).
pubmed: 9832326
doi: 10.1007/s004300050082
Deka, S. et al. Chlamydia trachomatis enters a viable but non-cultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells. Cell Microbiol. 8, 149–162 (2006).
pubmed: 16367874
doi: 10.1111/j.1462-5822.2005.00608.x
Beatty, W. L., Belanger, T. A., Desai, A. A., Morrison, R. P. & Byrne, G. I. Tryptophan depletion as a mechanism of γ interferon-mediated chlamydial persistence. Infect. Immun. 62, 3705–3711 (1994).
pubmed: 8063385
pmcid: 303021
doi: 10.1128/iai.62.9.3705-3711.1994
Aiyar, A. et al. Influence of the tryptophan–indole–IFNγ axis on human genital Chlamydia trachomatis infection: role of vaginal co-infections. Front. Cell Infect. Microbiol. 4, 72 (2014).
pubmed: 24918090
pmcid: 4042155
doi: 10.3389/fcimb.2014.00072
Østergaard, O. et al. Quantitative protein profiling of Chlamydia trachomatis growth forms reveals defense strategies against tryptophan starvation. Mol. Cell Proteom. 15, 3540–3550 (2016).
doi: 10.1074/mcp.M116.061986
Ziklo, N., Huston, W. M., Taing, K., Katouli, M. & Timms, P. In vitro rescue of genital strains of Chlamydia trachomatis from interferon-γ and tryptophan depletion with indole-positive, but not indole-negative Prevotella spp. BMC Microbiol. 16, 286 (2016).
pubmed: 27914477
pmcid: 5135834
doi: 10.1186/s12866-016-0903-4
Belland, R. J. et al. Transcriptome analysis of chlamydial growth during IFN-γ-mediated persistence and reactivation. Proc. Natl Acad. Sci. USA 100, 15971–15976 (2003).
pubmed: 14673075
pmcid: 307677
doi: 10.1073/pnas.2535394100
Rosario, C. J. & Tan, M. The early gene product EUO is a transcriptional repressor that selectively regulates promoters of Chlamydia late genes. Mol. Microbiol. 84, 1097–1107 (2012).
pubmed: 22624851
pmcid: 3544401
doi: 10.1111/j.1365-2958.2012.08077.x
Belland, R. J. et al. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl Acad. Sci. USA 100, 8478–8483 (2003).
pubmed: 12815105
pmcid: 166254
doi: 10.1073/pnas.1331135100
Borel, N. et al. Evidence for persistent Chlamydia pneumoniae infection of human coronary atheromas. Atherosclerosis 199, 154–161 (2008).
pubmed: 18028932
doi: 10.1016/j.atherosclerosis.2007.09.026
Pospischil, A., Borel, N., Chowdhury, E. H. & Guscetti, F. Aberrant chlamydial developmental forms in the gastrointestinal tract of pigs spontaneously and experimentally infected with Chlamydia suis. Vet. Microbiol. 135, 147–156 (2009).
pubmed: 18950970
doi: 10.1016/j.vetmic.2008.09.035
Phillips-Campbell, R., Kintner, J. & Schoborg, R. V. Induction of the Chlamydia muridarum stress/persistence response increases azithromycin treatment failure in a murine model of infection. Antimicrob. Agents Chemother. 58, 1782–1784 (2014).
pubmed: 24342653
pmcid: 3957849
doi: 10.1128/AAC.02097-13
Lewis, M. E. et al. Morphologic and molecular evaluation of Chlamydia trachomatis growth in human endocervix reveals distinct growth patterns. Front. Cell Infect. Microbiol. 4, 71 (2014).
pubmed: 24959423
pmcid: 4050528
doi: 10.3389/fcimb.2014.00071
Suchland, R. J., Dimond, Z. E., Putman, T. E. & Rockey, D. D. Demonstration of persistent infections and genome stability by whole-genome sequencing of repeat-positive, same-serovar Chlamydia trachomatis collected from the female genital tract. J. Infect. Dis. 215, 1657–1665 (2017).
pubmed: 28368459
pmcid: 6543881
doi: 10.1093/infdis/jix155
Somboonna, N. et al. Clinical persistence of Chlamydia trachomatis sexually transmitted strains involves novel mutations in the functional αββα tetramer of the tryptophan synthase operon. mBio 10, e01464-19 (2019).
pubmed: 31311884
pmcid: 6635532
doi: 10.1128/mBio.01464-19
Roth, A. et al. Hypoxia abrogates antichlamydial properties of IFN-γ in human fallopian tube cells in vitro and ex vivo. Proc. Natl Acad. Sci. USA 107, 19502–19507 (2010).
pubmed: 20974954
pmcid: 2984208
doi: 10.1073/pnas.1008178107
Hybiske, K. & Stephens, R. S. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc. Natl Acad. Sci. USA 104, 11430–11435 (2007).
pubmed: 17592133
pmcid: 2040915
doi: 10.1073/pnas.0703218104
Rasmussen, S. J. et al. Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J. Clin. Invest. 99, 77–87 (1997).
pubmed: 9011579
pmcid: 507770
doi: 10.1172/JCI119136
Faris, R. et al. Chlamydia trachomatis serovars drive differential production of proinflammatory cytokines and chemokines depending on the type of cell infected. Front. Cell Infect. Microbiol. 9, 399 (2019).
pubmed: 32039039
pmcid: 6988789
doi: 10.3389/fcimb.2019.00399
Dessus-Babus, S., Knight, S. T. & Wyrick, P. B. Chlamydial infection of polarized HeLa cells induces PMN chemotaxis but the cytokine profile varies between disseminating and non-disseminating strains. Cell Microbiol. 2, 317–327 (2000).
pubmed: 11207588
doi: 10.1046/j.1462-5822.2000.00058.x
Buchholz, K. R. & Stephens, R. S. Activation of the host cell proinflammatory interleukin-8 response by Chlamydia trachomatis. Cell Microbiol. 8, 1768–1779 (2006).
pubmed: 16803583
doi: 10.1111/j.1462-5822.2006.00747.x
Porcella, S. F. et al. Transcriptional profiling of human epithelial cells infected with plasmid-bearing and plasmid-deficient Chlamydia trachomatis. Infect. Immun. 83, 534–543 (2015).
pubmed: 25404022
pmcid: 4294249
doi: 10.1128/IAI.02764-14
Brokatzky, D. et al. A non-death function of the mitochondrial apoptosis apparatus in immunity. EMBO J. 38, e100907 (2019).
pubmed: 30979778
pmcid: 6545560
doi: 10.15252/embj.2018100907
Morrison, S. G. & Morrison, R. P. In situ analysis of the evolution of the primary immune response in murine Chlamydia trachomatis genital tract infection. Infect. Immun. 68, 2870–2879 (2000).
pubmed: 10768984
pmcid: 97499
doi: 10.1128/IAI.68.5.2870-2879.2000
Kiviat, N. B. et al. Cytologic manifestations of cervical and vaginal infections. I. Epithelial and inflammatory cellular changes. JAMA 253, 989–996 (1985).
pubmed: 3968836
doi: 10.1001/jama.1985.03350310071027
Schott, B. H. et al. Modeling of variables in cellular infection reveals CXCL10 levels are regulated by human genetic variation and the Chlamydia-encoded CPAF protease. Sci. Rep. 10, 18269 (2020).
pubmed: 33106516
pmcid: 7588472
doi: 10.1038/s41598-020-75129-y
Azenabor, A. A. & York, J. Chlamydia trachomatis evokes a relative anti-inflammatory response in a free Ca
pubmed: 19782401
doi: 10.1016/j.cimid.2009.09.002
Grayston, J. T., Wang, S. P., Yeh, L. J. & Kuo, C. C. Importance of reinfection in the pathogenesis of trachoma. Rev. Infect. Dis. 7, 717–725 (1985).
pubmed: 4070905
doi: 10.1093/clinids/7.6.717
Stephens, R. S. The cellular paradigm of chlamydial pathogenesis. Trends Microbiol. 11, 44–51 (2003).
pubmed: 12526854
doi: 10.1016/S0966-842X(02)00011-2
Maisonneuve, E. & Gerdes, K. Molecular mechanisms underlying bacterial persisters. Cell 157, 539–548 (2014).
pubmed: 24766804
doi: 10.1016/j.cell.2014.02.050
Liu, S. et al. Variable persister gene interactions with (p)ppGpp for persister formation in Escherichia coli. Front. Microbiol. 8, 1795 (2017).
pubmed: 28979246
pmcid: 5611423
doi: 10.3389/fmicb.2017.01795
Wu, Y., Vulic, M., Keren, I. & Lewis, K. Role of oxidative stress in persister tolerance. Antimicrob. Agents Chemother. 56, 4922–4926 (2012).
pubmed: 22777047
pmcid: 3421885
doi: 10.1128/AAC.00921-12
Amato, S. M. et al. The role of metabolism in bacterial persistence. Front. Microbiol. 5, 70 (2014).
pubmed: 24624123
pmcid: 3939429
doi: 10.3389/fmicb.2014.00070
Eisenreich, W., Rudel, T., Heesemann, J. & Goebel, W. Link between antibiotic persistence and antibiotic resistance in bacterial pathogens. Front. Cell Infect. Microbiol. 12, 900848 (2022).
pubmed: 35928205
pmcid: 9343593
doi: 10.3389/fcimb.2022.900848