circRNA-sponging: a pipeline for extensive analysis of circRNA expression and their role in miRNA sponging.
Journal
bioRxiv : the preprint server for biology
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187
Informations de publication
Date de publication:
23 Jun 2023
23 Jun 2023
Historique:
pubmed:
16
2
2023
medline:
16
2
2023
entrez:
15
2
2023
Statut:
epublish
Résumé
Circular RNAs (circRNAs) are long non-coding RNAs (lncRNAs) often associated with diseases and considered potential biomarkers for diagnosis and treatment. Among other functions, circRNAs have been shown to act as microRNA (miRNA) sponges, preventing the role of miRNAs that repress their targets. However, there is no pipeline to systematically assess the sponging potential of circRNAs. We developed circRNA-sponging, a nextflow pipeline that (1) identifies circRNAs via backsplicing junctions detected in RNA-seq data, (2) quantifies their expression values in relation to their linear counterparts spliced from the same gene, (3) performs differential expression analysis, (4) identifies and quantifies miRNA expression from miRNA-sequencing (miRNA-seq) data, (5) predicts miRNA binding sites on circRNAs, (6) systematically investigates potential circRNA-miRNA sponging events, (7) creates a network of competing endogenous RNAs, and (8) identifies potential circRNA biomarkers. We showed the functionality of the circRNA-sponging pipeline using RNA sequencing data from brain tissues, where we identified two distinct types of circRNAs characterized by a specific ratio of the number of the binding site to the length of the transcript. The circRNA-sponging pipeline is the first end-to-end pipeline to identify circRNAs and their sponging systematically with raw total RNA-seq and miRNA-seq files, allowing us to better indicate the functional impact of circRNAs as a routine aspect in transcriptomic research. https://github.com/biomedbigdata/circRNA-sponging Contact: markus.daniel.hoffmann@tum.de; markus.list@tum.de Supplementary Material: Supplementary data are available at Bioinformatic Advances online.
Identifiants
pubmed: 36789427
doi: 10.1101/2023.01.19.524495
pmc: PMC9928029
pii:
doi:
Types de publication
Preprint
Langues
eng
Commentaires et corrections
Type : UpdateIn
Références
Genome Res. 2021 Oct 18;:
pubmed: 34663689
Genomics Proteomics Bioinformatics. 2018 Aug;16(4):226-233
pubmed: 30172046
Nat Biotechnol. 2020 Mar;38(3):276-278
pubmed: 32055031
Oncogene. 2018 Feb 1;37(5):555-565
pubmed: 28991235
Nat Genet. 2007 Oct;39(10):1278-84
pubmed: 17893677
RNA. 2014 Dec;20(12):1829-42
pubmed: 25404635
PLoS One. 2018 Oct 18;13(10):e0206239
pubmed: 30335862
Brief Bioinform. 2021 Mar 22;22(2):1706-1728
pubmed: 32103237
Bioinformatics. 2015 Sep 1;31(17):2778-84
pubmed: 25926345
Mol Cell. 2013 Sep 26;51(6):792-806
pubmed: 24035497
Nat Struct Mol Biol. 2015 Mar;22(3):256-64
pubmed: 25664725
RNA. 2014 Nov;20(11):1666-70
pubmed: 25234927
Science. 2017 Sep 22;357(6357):
pubmed: 28798046
Front Genet. 2014 Jan 30;5:8
pubmed: 24523727
Nat Methods. 2022 Oct;19(10):1208-1220
pubmed: 35618955
Protein Cell. 2021 Dec;12(12):911-946
pubmed: 33131025
Cereb Cortex. 2011 Aug;21(8):1761-70
pubmed: 21139077
Nucleic Acids Res. 2020 Jan 8;48(D1):D148-D154
pubmed: 31647101
NAR Cancer. 2021 Jan 06;3(1):zcaa042
pubmed: 34316695
Front Immunol. 2018 Dec 18;9:2977
pubmed: 30619334
Genome Biol. 2015 Jun 16;16:126
pubmed: 26076956
Cell. 2018 Nov 1;175(4):984-997.e24
pubmed: 30388455
Genome Biol. 2014;15(12):550
pubmed: 25516281
Nat Biotechnol. 2016 May;34(5):525-7
pubmed: 27043002
Nucleic Acids Res. 2012 Jan;40(1):37-52
pubmed: 21911355
Cell. 2014 Sep 25;159(1):134-147
pubmed: 25242744
Bioinformatics. 2019 Jul 15;35(14):i596-i604
pubmed: 31510670
Nat Struct Mol Biol. 2017 Feb 6;24(2):194
pubmed: 28170000
Front Cell Dev Biol. 2020 Dec 01;8:590478
pubmed: 33335899
Nucleic Acids Res. 2006 May 08;34(8):e63
pubmed: 16682442
Genome Biol. 2018 Mar 23;19(1):40
pubmed: 29571299
Nat Rev Genet. 2016 Oct 14;17(11):679-692
pubmed: 27739534
Exp Mol Med. 2010 Apr 30;42(4):233-44
pubmed: 20177143
Mol Cell. 2015 Jun 4;58(5):870-85
pubmed: 25921068
Front Physiol. 2020 Sep 29;11:580465
pubmed: 33117197
Genome Res. 2016 Sep;26(9):1277-87
pubmed: 27365365
Cell Death Discov. 2022 May 20;8(1):268
pubmed: 35595755
Cell. 2011 Aug 5;146(3):353-8
pubmed: 21802130
Nature. 2013 Mar 21;495(7441):333-8
pubmed: 23446348
Nucleic Acids Res. 2020 Jan 8;48(D1):D101-D110
pubmed: 31732741
Bioinformatics. 2023 May 4;39(5):
pubmed: 37084275
J Biomed Sci. 2019 Apr 25;26(1):29
pubmed: 31027496
Cancer Lett. 2015 Sep 1;365(2):141-8
pubmed: 26052092
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Theranostics. 2018 Nov 12;8(21):5855-5869
pubmed: 30613267
Nucleic Acids Res. 2011 Jan;39(Database issue):D163-9
pubmed: 21071411
BMC Bioinformatics. 2013 Jan 16;14:7
pubmed: 23323831
Cell Rep. 2014 Dec 11;9(5):1966-1980
pubmed: 25544350
J Clin Med. 2022 May 20;11(10):
pubmed: 35629034
EBioMedicine. 2018 Aug;34:267-274
pubmed: 30078734
Nat Genet. 2013 Oct;45(10):1113-20
pubmed: 24071849
Bioinformatics. 2017 Oct 15;33(20):3314-3316
pubmed: 29028266
RNA. 2013 Feb;19(2):141-57
pubmed: 23249747
Bioinformatics. 2016 Sep 15;32(18):2768-75
pubmed: 27207945
Nature. 2013 Mar 21;495(7441):384-8
pubmed: 23446346
PeerJ. 2021 Jan 18;9:e10718
pubmed: 33552732
Nat Biotechnol. 2014 May;32(5):453-61
pubmed: 24811520
Genome Biol. 2003;5(1):R1
pubmed: 14709173
RNA Biol. 2017 Aug 3;14(8):1028-1034
pubmed: 27892769