Synthetic analysis of chromatin tracing and live-cell imaging indicates pervasive spatial coupling between genes.
bursts
chromatin
chromosomes
computational biology
diffusion
enhancer
gene expression
noise
none
systems biology
transcription
Journal
eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614
Informations de publication
Date de publication:
15 02 2023
15 02 2023
Historique:
received:
14
07
2022
accepted:
10
02
2023
pubmed:
16
2
2023
medline:
8
3
2023
entrez:
15
2
2023
Statut:
epublish
Résumé
The role of the spatial organization of chromosomes in directing transcription remains an outstanding question in gene regulation. Here, we analyze two recent single-cell imaging methodologies applied across hundreds of genes to systematically analyze the contribution of chromosome conformation to transcriptional regulation. Those methodologies are (1) single-cell chromatin tracing with super-resolution imaging in fixed cells; and (2) high-throughput labeling and imaging of nascent RNA in living cells. Specifically, we determine the contribution of physical distance to the coordination of transcriptional bursts. We find that individual genes adopt a constrained conformation and reposition toward the centroid of the surrounding chromatin upon activation. Leveraging the variability in distance inherent in single-cell imaging, we show that physical distance - but not genomic distance - between genes on individual chromosomes is the major factor driving co-bursting. By combining this analysis with live-cell imaging, we arrive at a corrected transcriptional correlation of [Formula: see text] for genes separated by < 400 nm. We propose that this surprisingly large correlation represents a physical property of human chromosomes and establishes a benchmark for future experimental studies.
Identifiants
pubmed: 36790144
doi: 10.7554/eLife.81861
pii: 81861
pmc: PMC9984193
doi:
pii:
Substances chimiques
Chromatin
0
Types de publication
Journal Article
Research Support, N.I.H., Intramural
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIH HHS
ID : 1ZIABC011383-11
Pays : United States
Déclaration de conflit d'intérêts
CB, DL No competing interests declared
Références
Curr Biol. 2002 Mar 19;12(6):439-45
pubmed: 11909528
Nature. 2021 Jan;589(7842):431-436
pubmed: 33361814
Biophys J. 2017 Oct 3;113(7):1383-1394
pubmed: 28978433
Cold Spring Harb Perspect Biol. 2021 Oct 1;13(10):
pubmed: 33903158
Cell. 2021 Jan 7;184(1):207-225.e24
pubmed: 33333019
Science. 2022 Apr 29;376(6592):496-501
pubmed: 35420890
Cell. 2013 Oct 24;155(3):606-20
pubmed: 24243018
Soft Matter. 2017 Feb 7;13(5):963-968
pubmed: 28078335
Mol Cell. 2017 Jul 20;67(2):282-293.e7
pubmed: 28712725
J Mol Biol. 2020 Feb 7;432(3):694-700
pubmed: 31689435
Nat Genet. 2022 Dec;54(12):1919-1932
pubmed: 36471071
Sci Rep. 2016 Oct 26;6:35949
pubmed: 27782203
Mol Cell. 2018 Apr 19;70(2):287-296.e6
pubmed: 29606591
Nat Methods. 2021 Jun;18(6):669-677
pubmed: 34059826
Trends Cell Biol. 2021 Jan;31(1):5-8
pubmed: 33191055
PLoS Comput Biol. 2015 Aug 28;11(8):e1004433
pubmed: 26317360
Science. 2017 Jul 28;357(6349):
pubmed: 28751582
Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15062-15067
pubmed: 31285341
Science. 2019 Sep 6;365(6457):
pubmed: 31488662
Cell. 2013 Dec 19;155(7):1479-91
pubmed: 24360272
PLoS Genet. 2019 Sep 16;15(9):e1008389
pubmed: 31525198
Nat Genet. 2018 Sep;50(9):1296-1303
pubmed: 30038397
Nat Commun. 2020 Oct 28;11(1):5445
pubmed: 33116115
Cell. 2019 Jan 10;176(1-2):213-226.e18
pubmed: 30554876
Cell. 2016 Jul 14;166(2):358-368
pubmed: 27293191
Trends Genet. 2015 Sep;31(9):483-90
pubmed: 26259670
Elife. 2016 May 03;5:
pubmed: 27138339
Science. 2018 Jul 27;361(6400):412-415
pubmed: 29930094
Biophys J. 2006 Jan 15;90(2):668-71
pubmed: 16258038
Science. 2018 Mar 2;359(6379):1050-1055
pubmed: 29371426
Genes Dev. 2022 Jan 1;36(1-2):7-16
pubmed: 34969825
Nature. 2012 Sep 6;489(7414):57-74
pubmed: 22955616
Adv Exp Med Biol. 2020;1267:15-43
pubmed: 32894475
Science. 2018 Oct 26;362(6413):
pubmed: 30361340
Nat Commun. 2021 Oct 1;12(1):5756
pubmed: 34599163
Nature. 2022 May;605(7911):754-760
pubmed: 35508662
Cell. 2020 Oct 1;183(1):28-45
pubmed: 32976797
Cell. 2015 Aug 27;162(5):948-59
pubmed: 26317464
G3 (Bethesda). 2016 Dec 7;6(12):4167-4174
pubmed: 27799341
Curr Biol. 1997 Dec 1;7(12):930-9
pubmed: 9382846
Nat Methods. 2013 Mar;10(3):246-8
pubmed: 23416756
Cell. 2020 Sep 17;182(6):1641-1659.e26
pubmed: 32822575
Science. 2013 Aug 9;341(6146):664-7
pubmed: 23828889
Cell. 2021 May 27;184(11):2878-2895.e20
pubmed: 33979654
J Cell Biol. 2019 May 6;218(5):1511-1530
pubmed: 30824489
Science. 2014 Jan 10;343(6167):193-6
pubmed: 24408435
Biophys J. 2020 May 5;118(9):2258-2267
pubmed: 32320676
Sci Adv. 2019 Oct 09;5(10):eaax6525
pubmed: 31633028
Mol Cell. 2020 May 7;78(3):539-553.e8
pubmed: 32213323
Nat Commun. 2015 Aug 24;6:8044
pubmed: 26299252
PLoS One. 2011;6(9):e25290
pubmed: 21966486