Autonomous self-burying seed carriers for aerial seeding.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
02 2023
02 2023
Historique:
received:
09
02
2022
accepted:
14
12
2022
entrez:
15
2
2023
pubmed:
16
2
2023
medline:
18
2
2023
Statut:
ppublish
Résumé
Aerial seeding can quickly cover large and physically inaccessible areas
Identifiants
pubmed: 36792743
doi: 10.1038/s41586-022-05656-3
pii: 10.1038/s41586-022-05656-3
doi:
Substances chimiques
Soil
0
Fertilizers
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
463-470Subventions
Organisme : National Science Foundation
ID : IIS-CAREER-1847149
Organisme : National Science Foundation
ID : CMMI-2020476
Organisme : National Science Foundation
ID : CMMI-2037097
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Fisher, K. A., Momen, B. & Kratochvil, R. J. Is broadcasting seed an effective winter cover crop planting method? Agron. J. 103, 472–478 (2011).
doi: 10.2134/agronj2010.0318
Ball, B. C. Cereal production with broadcast seed and reduced tillage: a review of recent experimental and farming experience. J. Agric. Eng. Res. 35, 71–95 (1986).
doi: 10.1016/0021-8634(86)90031-4
Kelly, L. T. et al. Fire and biodiversity in the Anthropocene. Science 370, eabb0355 (2020).
pubmed: 33214246
doi: 10.1126/science.abb0355
Keane, R. E. Managing wildfire for whitebark pine ecosystem restoration in western North America. Forests 9, 648 (2018).
doi: 10.3390/f9100648
Xiao, X. et al. Aerial seeding: an effective forest restoration method in highly degraded forest landscapes of sub-tropic regions. Forests 6, 1748–1762 (2015).
doi: 10.3390/f6061748
Monsen, S. B., Stevens, R. & Shaw, N. L. Restoring Western Ranges and Wildlands, vol. 1. (US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2004).
Ranwell, D. S. in Geology and Engineering (Ed. Cronin, L. E.) 471–483 (Elsevier, 1975).
Collins, B. A. & Fowler, D. B. A comparison of aerial and conventional methods for seeding winter wheat. Soils and Crops Workshop (University of Saskatchewan, 1989).
Keisling, T. C., Dillon, C. R., Oxner, M. D. & Counce, P. A. An economic and agronomic evaluation of selected wheat planting methods in Arkansas. In Proc. Southern Conservation Tillage Conference 156–158 (1997).
Stamp, N. E. Self-burial behaviour of Erodium cicutarium seeds. J. Ecol. 72, 611–620 (1984).
doi: 10.2307/2260070
Ha, J. et al. Hygroresponsive coiling of seed awns and soft actuators. Extreme Mech. Lett. 38, 100746 (2020).
doi: 10.1016/j.eml.2020.100746
Almeida, A. P. C. et al. Reversible water driven chirality inversion in cellulose-based helices isolated from Erodium awns. Soft Matter 15, 2838–2847 (2019).
pubmed: 30869683
doi: 10.1039/C8SM02290A
Abraham, Y. et al. Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork’s bill awn. J. R. Soc. Interface 9, 640–647 (2012).
pubmed: 21865252
doi: 10.1098/rsif.2011.0395
Evangelista, D., Hotton, S. & Dumais, J. The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae). J. Exp. Biol. 214, 521–529 (2011).
pubmed: 21270299
doi: 10.1242/jeb.050567
Rüggeberg, M. & Burgert, I. Bio-inspired wooden actuators for large scale applications. PLoS ONE 10, e0120718 (2015).
pubmed: 25835386
pmcid: 4383548
doi: 10.1371/journal.pone.0120718
Grönquist, P. et al. Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures. Sci. Adv. 5, eaax1311 (2019).
pubmed: 31548987
pmcid: 6744262
doi: 10.1126/sciadv.aax1311
Holstov, A., Bridgens, B. & Farmer, G. Hygromorphic materials for sustainable responsive architecture. Constr. Build. Mater. 98, 570–582 (2015).
doi: 10.1016/j.conbuildmat.2015.08.136
Krieg, O. D. in Advancing Wood Architecture: a Computational Approach (eds. Achim, M. et al.) 16 (Routledge, Taylor & Francis, 2016).
Cavanagh, A. M., Morgan, J. W. & Godfree, R. C. Awn morphology influences dispersal, microsite selection and burial of Australian native grass diaspores. Front. Ecol. Evol. 8, 581967 (2020).
doi: 10.3389/fevo.2020.581967
Tothill, J. C. Soil temperatures and seed burial in relation to the performance of Heteropogon contortus and Themeda australis in burnt native woodland pastures in eastern Queensland. Aust. J. Bot. 17, 269–275 (1969).
doi: 10.1071/BT9690269
Rice, K. J. Responses of Erodium to varying microsites: the role of germination cueing. Ecology 66, 1651–1657 (1985).
doi: 10.2307/1938027
Garnier, L. K. M. & Dajoz, I. Evolutionary significance of awn length variation in a clonal grass of fire-prone savannas. Ecology 82, 1720–1733 (2001).
doi: 10.1890/0012-9658(2001)082[1720:ESOALV]2.0.CO;2
Keane, R. E. & Parsons, R. A. Management Guide to Ecosystem Restoration Treatments: Whitebark Pine Forests of the Northern Rocky Mountains, U.S.A. 133 (US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2010).
Luo, D., Gu, J., Qin, F., Wang, G. & Yao, L. E-seed: shape-changing interfaces that self drill. In Proc. 33rd Annual ACM Symposium on User Interface Software and Technology 45–57 (Association for Computing Machinery, 2020).
Igiehon, N. O. & Babalola, O. O. Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl. Microbiol. Biotechnol. 101, 4871–4881 (2017).
pubmed: 28547568
doi: 10.1007/s00253-017-8344-z
Jung, W., Kim, W. & Kim, H.-Y. Self-burial mechanics of hygroscopically responsive awns. Integr. Comp. Biol. 54, 1034–1042 (2014).
pubmed: 24760793
doi: 10.1093/icb/icu026
Jung, W., Choi, S. M., Kim, W. & Kim, H.-Y. Reduction of granular drag inspired by self-burrowing rotary seeds. Phys. Fluids 29, 041702 (2017).
doi: 10.1063/1.4979998
Agnarsson, I., Dhinojwala, A., Sahni, V. & Blackledge, T. A. Spider silk as a novel high performance biomimetic muscle driven by humidity. J. Exp. Biol. 212, 1990–1994 (2009).
pubmed: 19525423
doi: 10.1242/jeb.028282
Chen, X., Mahadevan, L., Driks, A. & Sahin, O. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators. Nat. Nanotechnol. 9, 137–141 (2014).
pubmed: 24463362
doi: 10.1038/nnano.2013.290
Park, Y. et al. β‐Sheet nanocrystals dictate water responsiveness of Bombyx mori silk. Macromol. Rapid Commun. 41, 1900612 (2020).
doi: 10.1002/marc.201900612
Zhao, Z. et al. Digital printing of shape-morphing natural materials. Proc. Natl Acad. Sci. USA 118, e2113715118 (2021).
pubmed: 34663733
pmcid: 8639332
doi: 10.1073/pnas.2113715118
Shintake, J., Sonar, H., Piskarev, E., Paik, J. & Floreano, D. Soft pneumatic gelatin actuator for edible robotics. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 6221–6226 (IEEE, 2017).
He, Q., Huang, Y. & Wang, S. Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv. Funct. Mater. 28, 1705069 (2018).
doi: 10.1002/adfm.201705069
Baumgartner, M. et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102–1109 (2020).
pubmed: 32541932
doi: 10.1038/s41563-020-0699-3
Zhao, D. et al. High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv. Funct. Mater. 26, 6279–6287 (2016).
doi: 10.1002/adfm.201601645
Song, J. et al. Processing bulk natural wood into a high-performance structural material. Nature 554, 224–228 (2018).
pubmed: 29420466
doi: 10.1038/nature25476
Frey, M. et al. Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl. Mater. Interfaces 10, 5030–5037 (2018).
pubmed: 29373784
doi: 10.1021/acsami.7b18646
Frey, M. et al. Tunable wood by reversible interlocking and bioinspired mechanical gradients. Adv. Sci. 6, 1802190 (2019).
doi: 10.1002/advs.201802190
Xiao, S. et al. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science 374, 465–471 (2021).
pubmed: 34672741
doi: 10.1126/science.abg9556
Holmberg, S., Persson, K. & Petersson, H. Nonlinear mechanical behaviour and analysis of wood and fibre materials. Comput. Struct. 72, 459–480 (1999).
doi: 10.1016/S0045-7949(98)00331-9
Báder, M., Németh, R. & Konnerth, J. Micromechanical properties of longitudinally compressed wood. Eur. J. Wood Wood Prod. 77, 341–351 (2019).
doi: 10.1007/s00107-019-01392-0
Donaldson, L. Microfibril angle: measurement, variation and relationships – a review. IAWA J. 29, 345–386 (2008).
doi: 10.1163/22941932-90000192
Goodrich-Blair, H. They’ve got a ticket to ride: Xenorhabdus nematophila–Steinernema carpocapsae symbiosis. Curr. Opin. Microbiol. 10, 225–230 (2007).
pubmed: 17553732
doi: 10.1016/j.mib.2007.05.006
Gaugler, R. & Boush, G. M. Effects of ultraviolet radiation and sunlight on the entomogenous nematode, Neoaplectana carpocapsae. J. Invertebr. Pathol. 32, 291–296 (1978).
doi: 10.1016/0022-2011(78)90191-X
Chen, X. et al. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat. Commun. 6, 7346 (2015).
pubmed: 26079632
doi: 10.1038/ncomms8346
Park, Y. & Chen, X. Water-responsive materials for sustainable energy applications. J. Mater. Chem. A 8, 15227–15244 (2020).
doi: 10.1039/D0TA02896G
Shin, B. et al. Hygrobot: a self-locomotive ratcheted actuator powered by environmental humidity. Sci. Robot. 3, eaar2629 (2018).
pubmed: 33141700
doi: 10.1126/scirobotics.aar2629
Wen, M.-Y., Kang, C.-W. & Park, H.-J. Impregnation and mechanical properties of three softwoods treated with a new fire retardant chemical. J. Wood Sci. 60, 367–375 (2014).
doi: 10.1007/s10086-014-1408-0
Stamp, N. E. Seed dispersal of four sympatric grassland annual species of Erodium. J. Ecol. 77, 1005 (1989).
doi: 10.2307/2260819
Freckman, D. W. & Virginia, R. A. Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78, 363–369 (1997).
doi: 10.1890/0012-9658(1997)078[0363:LDASNC]2.0.CO;2
Yang, N., Li, T. & Zhang, L. A two-dimensional lattice model for simulating the failure and fracture behavior of wood. Wood Sci. Technol. 54, 63–87 (2020).
doi: 10.1007/s00226-019-01138-4
Reiterer, A. & Stanzl-Tschegg, S. E. Compressive behaviour of softwood under uniaxial loading at different orientations to the grain. Mech. Mater. 33, 705–715 (2001).
doi: 10.1016/S0167-6636(01)00086-2
Hanhijärvi, A. Advances in the knowledge of the influence of moisture changes on the long-term mechanical performance of timber structures. Mater. Struct. 33, 43 (2000).
doi: 10.1007/BF02481695
Fortino, S., Mirianon, F. & Toratti, T. A 3D moisture-stress FEM analysis for time dependent problems in timber structures. Mech. Time Depend. Mater. 13, 333 (2009).
doi: 10.1007/s11043-009-9103-z
Lunni, D., Cianchetti, M., Filippeschi, C., Sinibaldi, E. & Mazzolai, B. Plant‐inspired soft bistable structures based on hygroscopic electrospun nanofibers. Adv. Mater. Interfaces 7, 1901310 (2020).
doi: 10.1002/admi.201901310
Krüger, F. et al. Development of a material design space for 4D-printed bio-inspired hygroscopically actuated bilayer structures with unequal effective layer widths. Biomimetics 6, 58 (2021).
pubmed: 34698064
pmcid: 8544213
doi: 10.3390/biomimetics6040058