Adaptive, maladaptive, neutral, or absent plasticity: Hidden caveats of reaction norms.

environmental gradient environmental tolerance local adaptation phenotypic buffering range expansion reciprocal transplant experiments

Journal

Evolutionary applications
ISSN: 1752-4571
Titre abrégé: Evol Appl
Pays: England
ID NLM: 101461828

Informations de publication

Date de publication:
Feb 2023
Historique:
received: 26 01 2022
revised: 30 08 2022
accepted: 06 09 2022
entrez: 16 2 2023
pubmed: 17 2 2023
medline: 17 2 2023
Statut: epublish

Résumé

Adaptive phenotypic plasticity may improve the response of individuals when faced with new environmental conditions. Typically, empirical evidence for plasticity is based on phenotypic reaction norms obtained in reciprocal transplant experiments. In such experiments, individuals from their native environment are transplanted into a different environment, and a number of trait values, potentially implicated in individuals' response to the new environment, are measured. However, the interpretations of reaction norms may differ depending on the nature of the assessed traits, which may not be known beforehand. For example, for traits that contribute to local adaptation, adaptive plasticity implies nonzero slopes of reaction norms. By contrast, for traits that are correlated to fitness, high tolerance to different environments (possibly due to adaptive plasticity in traits that contribute to adaptation) may, instead, result in flat reaction norms. Here we investigate reaction norms for adaptive versus fitness-correlated traits and how they may affect the conclusions regarding the contribution of plasticity. To this end, we first simulate range expansion along an environmental gradient where plasticity evolves to different values locally and then perform reciprocal transplant experiments in silico. We show that reaction norms alone cannot inform us whether the assessed trait exhibits locally adaptive, maladaptive, neutral, or no plasticity, without any additional knowledge of the traits assessed and species' biology. We use the insights from the model to analyse and interpret empirical data from reciprocal transplant experiments involving the marine isopod

Identifiants

pubmed: 36793703
doi: 10.1111/eva.13482
pii: EVA13482
pmc: PMC9923493
doi:

Banques de données

Dryad
['10.5061/dryad.vhhmgqnxf']

Types de publication

Journal Article

Langues

eng

Pagination

486-503

Informations de copyright

© 2022 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.

Déclaration de conflit d'intérêts

The authors declare no conflict of interest.

Références

Mar Environ Res. 2021 Jan;163:105216
pubmed: 33227618
Evolution. 2021 Apr;75(4):876-887
pubmed: 33586171
Comp Biochem Physiol A Mol Integr Physiol. 2021 Mar;253:110865
pubmed: 33301891
Trends Ecol Evol. 2020 Nov;35(11):1021-1036
pubmed: 32912631
Philos Trans R Soc Lond B Biol Sci. 2022 Mar 14;377(1846):20210491
pubmed: 35067096
Philos Trans R Soc Lond B Biol Sci. 2022 Apr 11;377(1848):20210002
pubmed: 35184596
Heredity (Edinb). 2015 Oct;115(4):293-301
pubmed: 25690179
Am Nat. 2000 Aug;156(2):121-130
pubmed: 10856196
Trends Ecol Evol. 2016 Oct;31(10):803-813
pubmed: 27527257
Evol Appl. 2020 Feb 05;13(5):974-990
pubmed: 32431747
Comp Biochem Physiol A Mol Integr Physiol. 2008 Mar;149(3):299-305
pubmed: 18262452
Genetica. 2022 Aug;150(3-4):153-158
pubmed: 34739647
Evol Appl. 2021 Apr 04;14(5):1181-1201
pubmed: 34025759
Plant Biol (Stuttg). 2021 Sep;23(5):683-685
pubmed: 33932316
Mol Ecol. 2020 Dec;29(24):4857-4870
pubmed: 33048403
Glob Chang Biol. 2016 Apr;22(4):1548-60
pubmed: 26661135
Am Nat. 2017 May;189(5):463-473
pubmed: 28410032
Proc Natl Acad Sci U S A. 2021 Jan 26;118(4):
pubmed: 33479174
Philos Trans R Soc Lond B Biol Sci. 2022 Mar 14;377(1846):20210004
pubmed: 35067088
BMC Ecol. 2017 Apr 5;17(1):14
pubmed: 28381278
Philos Trans R Soc Lond B Biol Sci. 2022 Mar 14;377(1846):20210012
pubmed: 35067091
Trends Ecol Evol. 2016 Jul;31(7):563-574
pubmed: 27067134
J Evol Biol. 2009 Jul;22(7):1435-46
pubmed: 19467134
Evol Lett. 2019 Apr 25;3(3):271-285
pubmed: 31171983
Philos Trans R Soc Lond B Biol Sci. 2018 Oct 5;373(1757):
pubmed: 30150219
PLoS Biol. 2010 Apr 27;8(4):e1000357
pubmed: 20463950
PLoS One. 2022 Apr 22;17(4):e0260905
pubmed: 35452482
Am Nat. 2000 May;155(5):583-605
pubmed: 10777432
Philos Trans R Soc Lond B Biol Sci. 2022 Apr 11;377(1848):20210022
pubmed: 35184594
Biol Lett. 2007 Dec 22;3(6):670-3
pubmed: 17766238
Ecology. 2010 May;91(5):1530-7
pubmed: 20503884
Proc Biol Sci. 2006 Mar 22;273(1587):741-50
pubmed: 16608695
J Evol Biol. 2011 Jul;24(7):1462-76
pubmed: 21545421
Am Nat. 2021 May;197(5):526-542
pubmed: 33908832
Rev Fish Biol Fish. 2022;32(1):231-251
pubmed: 33814734
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Evol Appl. 2014 Jan;7(1):104-22
pubmed: 24454551
Evolution. 2018 Dec;72(12):2712-2727
pubmed: 30318588
Oecologia. 2004 Jul;140(2):302-11
pubmed: 15146322
Philos Trans R Soc Lond B Biol Sci. 2020 Aug 31;375(1806):20190531
pubmed: 32654652
J Exp Biol. 2000 Apr;203(Pt 7):1141-52
pubmed: 10708635

Auteurs

Martin Eriksson (M)

Department of Marine Sciences University of Gothenburg Gothenburg Sweden.
Linnaeus Centre for Marine Evolutionary Biology University of Gothenburg Gothenburg Sweden.
Gothenburg Global Biodiversity Centre University of Gothenburg Gothenburg Sweden.

Alexandra Kinnby (A)

Linnaeus Centre for Marine Evolutionary Biology University of Gothenburg Gothenburg Sweden.
Department of Marine Sciences University of Gothenburg Strömstad-Tjärnö Sweden.

Pierre De Wit (P)

Linnaeus Centre for Marine Evolutionary Biology University of Gothenburg Gothenburg Sweden.
Department of Marine Sciences University of Gothenburg Strömstad-Tjärnö Sweden.

Marina Rafajlović (M)

Department of Marine Sciences University of Gothenburg Gothenburg Sweden.
Linnaeus Centre for Marine Evolutionary Biology University of Gothenburg Gothenburg Sweden.

Classifications MeSH