Cisplatin resistance driver claspin is a target for immunotherapy in urothelial carcinoma.


Journal

Cancer immunology, immunotherapy : CII
ISSN: 1432-0851
Titre abrégé: Cancer Immunol Immunother
Pays: Germany
ID NLM: 8605732

Informations de publication

Date de publication:
Jul 2023
Historique:
received: 10 11 2022
accepted: 25 01 2023
medline: 15 6 2023
pubmed: 17 2 2023
entrez: 16 2 2023
Statut: ppublish

Résumé

Bladder cancer is a major and fatal urological disease. Cisplatin is a key drug for the treatment of bladder cancer, especially in muscle-invasive cases. In most cases of bladder cancer, cisplatin is effective; however, resistance to cisplatin has a significant negative impact on prognosis. Thus, a treatment strategy for cisplatin-resistant bladder cancer is essential to improve the prognosis. In this study, we established a cisplatin-resistant (CR) bladder cancer cell line using an urothelial carcinoma cell lines (UM-UC-3 and J82). We screened for potential targets in CR cells and found that claspin (CLSPN) was overexpressed. CLSPN mRNA knockdown revealed that CLSPN had a role in cisplatin resistance in CR cells. In our previous study, we identified human leukocyte antigen (HLA)-A*02:01-restricted CLSPN peptide by HLA ligandome analysis. Thus, we generated a CLSPN peptide-specific cytotoxic T lymphocyte clone that recognized CR cells at a higher level than wild-type UM-UC-3 cells. These findings indicate that CLSPN is a driver of cisplatin resistance and CLSPN peptide-specific immunotherapy may be effective for cisplatin-resistant cases.

Identifiants

pubmed: 36795123
doi: 10.1007/s00262-023-03388-5
pii: 10.1007/s00262-023-03388-5
doi:

Substances chimiques

Cisplatin Q20Q21Q62J
CLSPN protein, human 0
Adaptor Proteins, Signal Transducing 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2057-2065

Subventions

Organisme : Japan Science and Technology Agency
ID : JPMJCR15G3
Organisme : Japan Agency for Medical Research and Development
ID : 20cm0106352h0002
Organisme : Japan Agency for Medical Research and Development
ID : 22ama221317h0001
Organisme : Japan Agency for Medical Research and Development
ID : 16770510
Organisme : Japan Society for the Promotion of Science
ID : 20H03460
Organisme : Japan Society for the Promotion of Science
ID : 17H01540

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Saginala K, Barsouk A, Aluru JS et al (2020) Epidemiology of bladder cancer. Med Sci. https://doi.org/10.3390/medsci8010015
doi: 10.3390/medsci8010015
Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249
doi: 10.3322/caac.21660 pubmed: 33538338
Patel VG, Oh WK, Galsky MD (2020) Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin 70:404–423
doi: 10.3322/caac.21631 pubmed: 32767764
Berdik C (2017) Unlocking bladder cancer. Nature 551:S34–S35
doi: 10.1038/551S34a pubmed: 29117159
Guallar-Garrido S, Julián E (2020) Bacillus calmette-guérin (BCG) therapy for bladder cancer: an update. Immunotargets Ther 9:1–11
doi: 10.2147/ITT.S202006 pubmed: 32104666 pmcid: 7025668
Bellmunt J, de Wit R, Vaughn DJ et al (2017) Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 376:1015–1026
doi: 10.1056/NEJMoa1613683 pubmed: 28212060 pmcid: 5635424
Galsky MD, Arija JÁA, Bamias A et al (2020) Atezolizumab with or without chemotherapy in metastatic urothelial cancer (IMvigor130): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 395:1547–1557
doi: 10.1016/S0140-6736(20)30230-0 pubmed: 32416780
Powles T, Park SH, Voog E et al (2020) Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N Engl J Med 383:1218–1230
doi: 10.1056/NEJMoa2002788 pubmed: 32945632
Bajorin DF, Witjes JA, Gschwend JE et al (2021) Adjuvant nivolumab versus placebo in muscle-invasive urothelial carcinoma. N Engl J Med 384:2102–2114
doi: 10.1056/NEJMoa2034442 pubmed: 34077643 pmcid: 8215888
Inoue R, Hirohashi Y, Kitamura H et al (2017) GRIK2 has a role in the maintenance of urothelial carcinoma stem-like cells, and its expression is associated with poorer prognosis. Oncotarget 8:28826–28839
doi: 10.18632/oncotarget.16259 pubmed: 28418868 pmcid: 5438695
Hu Y, Smyth GK (2009) ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 347:70–78
doi: 10.1016/j.jim.2009.06.008 pubmed: 19567251
Miyata H, Hirohashi Y, Yamada S et al (2022) GRIK2 is a target for bladder cancer stem-like cell-targeting immunotherapy. Cancer Immunol Immunother 71:795–806
doi: 10.1007/s00262-021-03025-z pubmed: 34405274
Morita R, Hirohashi Y, Torigoe T et al (2016) Olfactory receptor family 7 subfamily c member 1 is a novel marker of colon cancer-initiating cells and is a potent target of immunotherapy. Clin Cancer Res 22:3298–3309
doi: 10.1158/1078-0432.CCR-15-1709 pubmed: 26861454
Haberle V, Forrest ARR, Hayashizaki Y et al (2015) CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses. Nucleic Acids Res 43:e51
doi: 10.1093/nar/gkv054 pubmed: 25653163 pmcid: 4417143
Frith MC, Valen E, Krogh A et al (2008) A code for transcription initiation in mammalian genomes. Genome Res 18:1–12
doi: 10.1101/gr.6831208 pubmed: 18032727 pmcid: 2134772
Yu G, Wang L-G, Han Y, He Q-Y (2012) Clusterprofiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287
doi: 10.1089/omi.2011.0118 pubmed: 22455463 pmcid: 3339379
Morita R, Hirohashi Y, Nakatsugawa M et al (2014) Production of multiple CTL epitopes from multiple tumor-associated antigens. Methods Mol Biol 1139:345–355
doi: 10.1007/978-1-4939-0345-0_28 pubmed: 24619692
Hirano N, Butler MO, Xia Z et al (2006) Engagement of CD83 ligand induces prolonged expansion of CD8+ T cells and preferential enrichment for antigen specificity. Blood 107:1528–1536
doi: 10.1182/blood-2005-05-2073 pubmed: 16239433 pmcid: 1895397
Matsuki M, Hirohashi Y, Nakatsugawa M et al (2022) Tumor-infiltrating CD8+ T cells recognize a heterogeneously expressed functional neoantigen in clear cell renal cell carcinoma. Cancer Immunol Immunother 71:905–918
doi: 10.1007/s00262-021-03048-6 pubmed: 34491407
Barr MP, Gray SG, Hoffmann AC et al (2013) Generation and characterisation of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature. PLoS ONE 8:e54193
doi: 10.1371/journal.pone.0054193 pubmed: 23349823 pmcid: 3547914
Vallo S, Michaelis M, Rothweiler F et al (2015) Drug-resistant urothelial cancer cell lines display diverse sensitivity profiles to potential second-line therapeutics. Transl Oncol 8:210–216
doi: 10.1016/j.tranon.2015.04.002 pubmed: 26055179 pmcid: 4487788
Kobayashi G, Sentani K, Hattori T et al (2019) Clinicopathological significance of claspin overexpression and its association with spheroid formation in gastric cancer. Hum Pathol 84:8–17
doi: 10.1016/j.humpath.2018.09.001 pubmed: 30240769
Peschiaroli A, Dorrello NV, Guardavaccaro D et al (2006) SCFbetaTrCP-mediated degradation of claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 23:319–329
doi: 10.1016/j.molcel.2006.06.013 pubmed: 16885022
Hirohashi Y, Torigoe T, Tsukahara T et al (2016) Immune responses to human cancer stem-like cells/cancer-initiating cells. Cancer Sci 107:12–17
doi: 10.1111/cas.12830 pubmed: 26440127
Prager BC, Xie Q, Bao S, Rich JN (2019) Cancer stem cells: the architects of the tumor ecosystem. Cell Stem Cell 24:41–53
doi: 10.1016/j.stem.2018.12.009 pubmed: 30609398 pmcid: 6350931
Park CY, Tseng D, Weissman IL (2009) Cancer stem cell-directed therapies: recent data from the laboratory and clinic. Mol Ther 17:219–230
doi: 10.1038/mt.2008.254 pubmed: 19066601
Ulsamer A, Martínez-Limón A, Bader S et al (2022) Regulation of claspin by the p38 stress-activated protein kinase protects cells from DNA damage. Cell Rep 40:111375
doi: 10.1016/j.celrep.2022.111375 pubmed: 36130506
Bianco JN, Bergoglio V, Lin Y-L et al (2019) Overexpression of claspin and timeless protects cancer cells from replication stress in a checkpoint-independent manner. Nat Commun 10:910
doi: 10.1038/s41467-019-08886-8 pubmed: 30796221 pmcid: 6385232
Kobayashi G, Sentani K, Babasaki T et al (2020) Claspin overexpression is associated with high-grade histology and poor prognosis in renal cell carcinoma. Cancer Sci 111:1020–1027
doi: 10.1111/cas.14299 pubmed: 31912588 pmcid: 7060467
Kobayashi G, Hayashi T, Sentani K et al (2021) Clinicopathological significance of claspin overexpression and its efficacy as a novel biomarker for the diagnosis of urothelial carcinoma. Virchows Arch. https://doi.org/10.1007/s00428-021-03239-7
doi: 10.1007/s00428-021-03239-7 pubmed: 34842980
Babasaki T, Sentani K, Sekino Y et al (2021) Overexpression of claspin promotes docetaxel resistance and is associated with prostate-specific antigen recurrence in prostate cancer. Cancer Med 10:5574–5588
doi: 10.1002/cam4.4113 pubmed: 34240817 pmcid: 8366092
Jia Y, Cheng X, Liang W et al (2022) CLSPN is a potential biomarker associated with poor prognosis in low-grade gliomas based on a multi-database analysis. Curr Res Transl Med 70:103345
doi: 10.1016/j.retram.2022.103345 pubmed: 35487167
Smits VAJ, Cabrera E, Freire R, Gillespie DA (2019) Claspin-checkpoint adaptor and DNA replication factor. FEBS J 286:441–455
doi: 10.1111/febs.14594 pubmed: 29931808
Kloetzel PM (2001) Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2:179–187
doi: 10.1038/35056572 pubmed: 11265247
Andersson HA, Barry MA (2004) Maximizing antigen targeting to the proteasome for gene-based vaccines. Mol Ther 10:432–446
doi: 10.1016/j.ymthe.2004.05.035 pubmed: 15336644
Park M-J, Kim E-K, Han J-Y et al (2010) Fusion of the human cytomegalovirus pp65 antigen with both ubiquitin and ornithine decarboxylase additively enhances antigen presentation to CD8(+) T cells in human dendritic cells. Hum Gene Ther 21:957–967
doi: 10.1089/hum.2009.216 pubmed: 20218861
Sasaya T, Kubo T, Murata K et al (2022) Cisplatin-induced HSF1-HSP90 axis enhances the expression of functional PD-L1 in oral squamous cell carcinoma. Cancer Med. https://doi.org/10.1002/cam4.5310
doi: 10.1002/cam4.5310 pubmed: 36200687 pmcid: 9972142

Auteurs

Shuhei Yamada (S)

Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.
Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8648, Japan.

Haruka Miyata (H)

Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8648, Japan.

Makoto Isono (M)

Department of Urology, Abiko Toho Hospital, Abiko, 270-1166, Japan.

Kanta Hori (K)

Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.
Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8648, Japan.

Junko Yanagawa (J)

Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.

Aiko Murai (A)

Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.

Tomoyuki Minowa (T)

Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.
Departments of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan.

Yuka Mizue (Y)

Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.

Kenta Sasaki (K)

Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.
Department of Dermatology, Asahikawa Medical University School of Medicine, Asahikawa, Hokkaido, 078-8510, Japan.

Kenji Murata (K)

Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.

Serina Tokita (S)

Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.

Munehide Nakatsugawa (M)

Department of Pathology, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, 193-0998, Japan.

Sadahiro Iwabuchi (S)

Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama, 641-8509, Japan.

Shinichi Hashimoto (S)

Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama, 641-8509, Japan.

Terufumi Kubo (T)

Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.

Takayuki Kanaseki (T)

Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.

Tomohide Tsukahara (T)

Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.

Takashige Abe (T)

Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8648, Japan.

Nobuo Shinohara (N)

Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8648, Japan.

Yoshihiko Hirohashi (Y)

Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan. hirohash@sapmed.ac.jp.

Toshihiko Torigoe (T)

Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan. torigoe@sapmed.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH