Exercise-induced microbial changes in preventing type 2 diabetes.
body fat
diabetes
gut microbiota
handgrip
maximum oxygen intake
Journal
Science China. Life sciences
ISSN: 1869-1889
Titre abrégé: Sci China Life Sci
Pays: China
ID NLM: 101529880
Informations de publication
Date de publication:
09 Feb 2023
09 Feb 2023
Historique:
received:
08
11
2022
accepted:
10
01
2023
entrez:
16
2
2023
pubmed:
17
2
2023
medline:
17
2
2023
Statut:
aheadofprint
Résumé
The metabolic benefits associated with long-term physical activity are well appreciated and growing evidence suggests that it involves the gut microbiota. Here we re-evaluated the link between exercise-induced microbial changes and those associated with prediabetes and diabetes. We found that the relative abundances of substantial amounts of diabetes-associated metagenomic species associated negatively with physical fitness in a Chinese athlete students cohort. We additionally showed that those microbial changes correlated more with handgrip strength, a simple but valuable biomarker suggestive of the diabetes states, than maximum oxygen intake, one of the key surrogates for endurance training. Moreover, the causal relationships among exercise, risks for diabetes, and gut microbiota were explored based on mediation analysis. We propose that the protective roles of exercise against type 2 diabetes are mediated, at least partly, by the gut microbiota.
Identifiants
pubmed: 36795181
doi: 10.1007/s11427-022-2272-3
pii: 10.1007/s11427-022-2272-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. Science China Press.
Références
Argyridou, S., Bernieh, D., Henson, J., Edwardson, C.L., Davies, M.J., Khunti, K., Suzuki, T., and Yates, T. (2020). Associations between physical activity and trimethylamine N-oxide in those at risk of type 2 diabetes. BMJ Open Diab Res Care 8, e001359.
pubmed: 33262105
pmcid: 7709505
doi: 10.1136/bmjdrc-2020-001359
Barton, W., Penney, N.C., Cronin, O., Garcia-Perez, I., Molloy, M.G., Holmes, E., Shanahan, F., Cotter, P.D., and O’Sullivan, O. (2018). The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 67, 625–633.
pubmed: 28360096
Caspersen, C.J., Powell, K.E., and Christenson, G.M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100, 126–131.
pubmed: 3920711
pmcid: 1424733
Celis-Morales, C.A., Petermann, F., Hui, L., Lyall, D.M., Iliodromiti, S., McLaren, J., Anderson, J., Welsh, P., Mackay, D.F., Pell, J.P., et al. (2017). Associations between diabetes and both cardiovascular disease and all-cause mortality are modified by grip strength: evidence from UK Biobank, a prospective population-based cohort study. Diabetes Care 40, 1710–1718.
pubmed: 28986505
doi: 10.2337/dc17-0921
Cerdá, B., Pérez, M., Pérez-Santiago, J.D., Tornero-Aguilera, J.F., González-Soltero, R., and Larrosa, M. (2016). Gut microbiota modification: another piece in the puzzle of the benefits of physical exercise in health? Front Physiol 7, 51.
pubmed: 26924990
pmcid: 4757670
doi: 10.3389/fphys.2016.00051
Chatard, J.C., Mujika, I., Guy, C., and Lacour, J.R. (1999). Anaemia and iron deficiency in athletes. Sports Med 27, 229–240.
pubmed: 10367333
doi: 10.2165/00007256-199927040-00003
Circu, M.L., and Aw, T.Y. (2011). Redox biology of the intestine. Free Radic Res 45, 1245–1266.
pubmed: 21831010
pmcid: 3210416
doi: 10.3109/10715762.2011.611509
Contrepois, K., Wu, S., Moneghetti, K.J., Hornburg, D., Ahadi, S., Tsai, M. S., Metwally, A.A., Wei, E., Lee-McMullen, B., Quijada, J.V., et al. (2020). Molecular choreography of acute exercise. Cell 181, 1112–1130.e16.
pubmed: 32470399
pmcid: 7299174
doi: 10.1016/j.cell.2020.04.043
Depommier, C., Everard, A., Druart, C., Plovier, H., Van Hul, M., Vieira-Silva, S., Falony, G., Raes, J., Maiter, D., Delzenne, N.M., et al. (2019). Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med 25, 1096–1103.
pubmed: 31263284
pmcid: 6699990
doi: 10.1038/s41591-019-0495-2
Egli, L., Lecoultre, V., Theytaz, F., Campos, V., Hodson, L., Schneiter, P., Mittendorfer, B., Patterson, B.W., Fielding, B.A., Gerber, P.A., et al. (2013). Exercise prevents fructose-induced hypertriglyceridemia in healthy young subjects. Diabetes 62, 2259–2265.
pubmed: 23674606
pmcid: 3712038
doi: 10.2337/db12-1651
Estaki, M., Pither, J., Baumeister, P., Little, J.P., Gill, S.K., Ghosh, S., Ahmadi-Vand, Z., Marsden, K.R., and Gibson, D.L. (2016). Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome 4, 42.
pubmed: 27502158
pmcid: 4976518
doi: 10.1186/s40168-016-0189-7
Evans, C.C., LePard, K.J., Kwak, J.W., Stancukas, M.C., Laskowski, S., Dougherty, J., Moulton, L., Glawe, A., Wang, Y., Leone, V., et al. (2014). Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS ONE 9, e92193.
pubmed: 24670791
pmcid: 3966766
doi: 10.1371/journal.pone.0092193
Grahnemo, L., Nethander, M., Coward, E., Gabrielsen, M.E., Sree, S., Billod, J.M., Engstrand, L., Abrahamsson, S., Langhammer, A., Hveem, K., et al. (2022). Cross-sectional associations between the gut microbe Ruminococcus gnavus and features of the metabolic syndrome. Lancet Diabetes Endocrinol 10, 481–483.
pubmed: 35662399
doi: 10.1016/S2213-8587(22)00113-9
Han, M., Yang, K., Yang, P., Zhong, C., Chen, C., Wang, S., Lu, Q., and Ning, K. (2020). Stratification of athletes’ gut microbiota: the multifaceted hubs associated with dietary factors, physical characteristics and performance. Gut Microbes 12, 1842991.
pubmed: 33289609
pmcid: 7734118
doi: 10.1080/19490976.2020.1842991
Hannou, S.A., Haslam, D.E., McKeown, N.M., and Herman, M.A. (2018). Fructose metabolism and metabolic disease. J Clin Investigation 128, 545–555.
doi: 10.1172/JCI96702
He, S., Lei, W., Li, J., Yu, K., Yu, Y., Zhou, L., Zhang, X., He, M., Guo, H., Yang, H., et al. (2019). Relation of platelet parameters with incident cardiovascular disease (The Dongfeng-Tongji Cohort Study). Am J Cardiol 123, 239–248.
pubmed: 30413247
doi: 10.1016/j.amjcard.2018.10.016
Heber, S., and Volf, I. (2015). Effects of physical (in)activity on platelet function. Biomed Res Int 2015, 1–11.
doi: 10.1155/2015/165078
Heyward, V.H., and Gibson, A.L. (2014). Advanced Fitness Assessment and Exercise Prescription. 7th ed. Mitcham: Human Kinetics.
Hoffman, N.J., Parker, B.L., Chaudhuri, R., Fisher-Wellman, K.H., Kleinert, M., Humphrey, S.J., Yang, P., Holliday, M., Trefely, S., Fazakerley, D.J., et al. (2015). Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab 22, 922–935.
pubmed: 26437602
pmcid: 4635038
doi: 10.1016/j.cmet.2015.09.001
Irving, B.A., Davis, C.K., Brock, D.W., Weltman, J.Y., Swift, D., Barrett, E. J., Gaesser, G.A., and Weltman, A. (2008). Effect of exercise training intensity on abdominal visceral fat and body composition. Med Sci Sports Exerc 40, 1863–1872.
pubmed: 18845966
pmcid: 2730190
doi: 10.1249/MSS.0b013e3181801d40
Jeukendrup, A.E. (2017). Training the gut for athletes. Sports Med 47, 101–110.
pubmed: 28332114
pmcid: 5371619
doi: 10.1007/s40279-017-0690-6
Johnson, R.J., Nakagawa, T., Sanchez-Lozada, L.G., Shafiu, M., Sundaram, S., Le, M., Ishimoto, T., Sautin, Y.Y., and Lanaspa, M.A. (2013). Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes 62, 3307–3315.
pubmed: 24065788
pmcid: 3781481
doi: 10.2337/db12-1814
Karlsson, F.H., Nookaew, I., and Nielsen, J. (2014). Metagenomic data utilization and analysis (MEDUSA) and construction of a global gut microbial gene catalogue. PLoS Comput Biol 10, e1003706.
pubmed: 25010449
pmcid: 4091689
doi: 10.1371/journal.pcbi.1003706
Knudsen, N.H., Stanya, K.J., Hyde, A.L., Chalom, M.M., Alexander, R.K., Liou, Y.H., Starost, K.A., Gangl, M.R., Jacobi, D., Liu, S., et al. (2020). Interleukin-13 drives metabolic conditioning of muscle to endurance exercise. Science 368, eaat3987.
pubmed: 32355002
pmcid: 7549736
doi: 10.1126/science.aat3987
Koh, A., De Vadder, F., Kovatcheva-Datchary, P., and Bäckhed, F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345.
pubmed: 27259147
doi: 10.1016/j.cell.2016.05.041
Koh, A., Molinaro, A., Ståhlman, M., Khan, M.T., Schmidt, C., Mannerås-Holm, L., Wu, H., Carreras, A., Jeong, H., Olofsson, L.E., et al. (2018). Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961.e17.
pubmed: 30401435
doi: 10.1016/j.cell.2018.09.055
Kratz, A., Wood, M.J., Siegel, A.J., Hiers, J.R., and Van Cott, E.M. (2006). Effects of marathon running on platelet activation markers: direct evidence for in vivo platelet activation. Am J Clin Pathol 125, 296–300.
pubmed: 16393676
doi: 10.1309/PRF5N7P2XM6E243H
Kuhn, M. (2008). Building predictive models in R using the caret package. J Stat Soft 28, 26.
doi: 10.18637/jss.v028.i05
Lewis, G.D., Farrell, L., Wood, M.J., Martinovic, M., Arany, Z., Rowe, G. C., Souza, A., Cheng, S., McCabe, E.L., Yang, E., et al. (2010). Metabolic signatures of exercise in human plasma. Sci Transl Med 2, 33ra37.
pubmed: 20505214
pmcid: 3010398
doi: 10.1126/scitranslmed.3001006
Lewis, S.J., and Heaton, K.W. (1999). The metabolic consequences of slow colonic transit. Am J Gastroenterol 94, 2010–2016.
pubmed: 10445521
doi: 10.1111/j.1572-0241.1999.01271.x
Lindstrom, J., and Tuomilehto, J. (2003). The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care 26, 725–731.
pubmed: 12610029
doi: 10.2337/diacare.26.3.725
Liu, F., Kondo, T., and Toda, Y. (1993). Brief physical inactivity prolongs colonic transit time in elderly active men. Int J Sports Med 14, 465–467.
pubmed: 8300274
doi: 10.1055/s-2007-1021212
Liu, Y., Wang, Y., Ni, Y., Cheung, C.K.Y., Lam, K.S.L., Wang, Y., Xia, Z., Ye, D., Guo, J., Tse, M.A., et al. (2020). Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention. Cell Metab 31, 77–91.e5.
pubmed: 31786155
doi: 10.1016/j.cmet.2019.11.001
Luan, X., Tian, X., Zhang, H., Huang, R., Li, N., Chen, P., and Wang, R. (2019). Exercise as a prescription for patients with various diseases. J Sport Health Sci 8, 422–441.
pubmed: 31534817
pmcid: 6742679
doi: 10.1016/j.jshs.2019.04.002
Luo, B., Xiang, D., Wu, D., Liu, C., Fang, Y., Chen, P., and Hu, Y.P. (2018). Hepatic PHD2/HIF-1α axis is involved in postexercise systemic energy homeostasis. FASEB J 32, 4670–4680.
pubmed: 29601782
doi: 10.1096/fj.201701139R
Magkos, F., Hjorth, M.F., and Astrup, A. (2020). Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 16, 545–555.
pubmed: 32690918
doi: 10.1038/s41574-020-0381-5
Mairbäurl, H. (2013). Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Front Physiol 4, 332.
pubmed: 24273518
pmcid: 3824146
doi: 10.3389/fphys.2013.00332
Manda, C.M., Hokimoto, T., Okura, T., Isoda, H., Shimano, H., and Wagatsuma, Y. (2020). Handgrip strength predicts new prediabetes cases among adults: A prospective cohort study. Prev Med Rep 17, 101056.
pubmed: 32071846
pmcid: 7016270
doi: 10.1016/j.pmedr.2020.101056
Mardinoglu, A., Wu, H., Bjornson, E., Zhang, C., Hakkarainen, A., Räsänen, S.M., Lee, S., Mancina, R.M., Bergentall, M., Pietiläinen, K. H., et al. (2018). An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab 27, 559–571.e5.
pubmed: 29456073
pmcid: 6706084
doi: 10.1016/j.cmet.2018.01.005
Maynar, M., Llerena, F., Bartolomé, I., Alves, J., Robles, M.C., Grijota, F. J., and Muñoz, D. (2018). Seric concentrations of copper, chromium, manganesum, nickel and selenium in aerobic, anaerobic and mixed professional sportsmen. J Int Soc Sports Nutr 15, 8.
pubmed: 29449792
pmcid: 5812230
doi: 10.1186/s12970-018-0212-4
McMurdie, P.J., and Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217.
pubmed: 23630581
pmcid: 3632530
doi: 10.1371/journal.pone.0061217
Nemet, I., Saha, P.P., Gupta, N., Zhu, W., Romano, K.A., Skye, S.M., Cajka, T., Mohan, M.L., Li, L., Wu, Y., et al. (2020). A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 180, 862–877.e22.
pubmed: 32142679
pmcid: 7402401
doi: 10.1016/j.cell.2020.02.016
Oettle, G.J. (1991). Effect of moderate exercise on bowel habit. Gut 32, 941–944.
pubmed: 1885077
pmcid: 1378967
doi: 10.1136/gut.32.8.941
Okamoto, T., Morino, K., Ugi, S., Nakagawa, F., Lemecha, M., Ida, S., Ohashi, N., Sato, D., Fujita, Y., and Maegawa, H. (2019). Microbiome potentiates endurance exercise through intestinal acetate production. Am J Physiol Endocrinol Metab 316, E956–E966.
pubmed: 30860879
doi: 10.1152/ajpendo.00510.2018
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., and Wagner, H. (2015). vegan: community ecology package. R package version 22–1. http://CRANR-projectorg/package=vegan.
Ouwerkerk, J.P., van der Ark, K.C.H., Davids, M., Claassens, N.J., Finestra, T.R., de Vos, W.M., and Belzer, C. (2016). Adaptation of Akkermansia muciniphila to the oxic-anoxic interface of the mucus layer. Appl Environ Microbiol 82, 6983–6993.
pubmed: 27663027
pmcid: 5103097
doi: 10.1128/AEM.01641-16
Ouyang, X., Cirillo, P., Sautin, Y., McCall, S., Bruchette, J.L., Diehl, A.M., Johnson, R.J., and Abdelmalek, M.F. (2008). Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol 48, 993–999.
pubmed: 18395287
pmcid: 2423467
doi: 10.1016/j.jhep.2008.02.011
Pan, Z., Hu, Y., Huang, Z., Han, N., Li, Y., Zhuang, X., Yin, J., Peng, H., Gao, Q., Zhang, W., et al. (2022). Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge. Sci China Life Sci 65, 2093–2113.
pubmed: 35301705
doi: 10.1007/s11427-021-2056-1
Peters, H.P., De Vries, W.R., Vanberge-Henegouwen, G.P., and Akkermans, L.M. (2001). Potential benefits and hazards of physical activity and exercise on the gastrointestinal tract. Gut 48, 435–439.
pubmed: 11171839
pmcid: 1760153
doi: 10.1136/gut.48.3.435
Plovier, H., Everard, A., Druart, C., Depommier, C., Van Hul, M., Geurts, L., Chilloux, J., Ottman, N., Duparc, T., Lichtenstein, L., et al. (2017). A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23, 107–113.
pubmed: 27892954
doi: 10.1038/nm.4236
Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60.
pubmed: 23023125
doi: 10.1038/nature11450
Savikj, M., and Zierath, J.R. (2020). Train like an athlete: applying exercise interventions to manage type 2 diabetes. Diabetologia 63, 1491–1499.
pubmed: 32529411
pmcid: 7351814
doi: 10.1007/s00125-020-05166-9
Sayer, A.A., Syddall, H.E., Dennison, E.M., Martin, H.J., Phillips, D.I.W., Cooper, C., and Byrne, C.D. (2007). Grip strength and the metabolic syndrome: findings from the Hertfordshire Cohort Study. QJM 100, 707–713.
pubmed: 17951315
doi: 10.1093/qjmed/hcm095
Scheiman, J., Luber, J.M., Chavkin, T.A., MacDonald, T., Tung, A., Pham, L.D., Wibowo, M.C., Wurth, R.C., Punthambaker, S., Tierney, B.T., et al. (2019). Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med 25, 1104–1109.
pubmed: 31235964
pmcid: 7368972
doi: 10.1038/s41591-019-0485-4
Sigal, R.J., Kenny, G.P., Boulé, N.G., Wells, G.A., Prud’homme, D., Fortier, M., Reid, R.D., Tulloch, H., Coyle, D., Phillips, P., et al. (2007). Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med 147, 357–369.
pubmed: 17876019
doi: 10.7326/0003-4819-147-6-200709180-00005
Stanford, K.I., Lynes, M.D., Takahashi, H., Baer, L.A., Arts, P.J., May, F.J., Lehnig, A.C., Middelbeek, R.J.W., Richard, J.J., So, K., et al. (2018). 12,13-diHOME: an exercise-induced lipokine that increases skeletal muscle fatty acid uptake. Cell Metab 27, 1111–1120.e3.
pubmed: 29719226
pmcid: 5935136
doi: 10.1016/j.cmet.2018.03.020
Stephen, A.M., Wiggins, H.S., and Cummings, J.H. (1987). Effect of changing transit time on colonic microbial metabolism in man. Gut 28, 601–609.
pubmed: 3596341
pmcid: 1432874
doi: 10.1136/gut.28.5.601
Storey, J.D., Bass, A.J., Dabney, A., and Robinson, D. (2015). qvalue: Q-value estimation for false discovery rate control. R package version 2100. http://githubcom/jdstorey/qvalue.
Team, R.C. (2015). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R.project.org/.
Tian, M., Liu, H., Chen, S., Yang, Z., Tao, W., Peng, S., Che, H., and Jin, L. (2022). Report on the 3rd Board Meeting of the International Human Phenome Consortium. Phenomics doi: https://doi.org/10.1007/s43657-022-00065-y .
Tingley, D., Yamamoto, T., Hirose, K., Keele, L., and Imai, K. (2014). mediation: R package for causal mediation analysis. J Stat Soft 59, 1–38.
doi: 10.18637/jss.v059.i05
Wander, P.L., Boyko, E.J., Leonetti, D.L., McNeely, M.J., Kahn, S.E., and Fujimoto, W.Y. (2013). Change in visceral adiposity independently predicts a greater risk of developing type 2 diabetes over 10 years in Japanese Americans. Diabetes Care 36, 289–293.
pubmed: 22966093
pmcid: 3554282
doi: 10.2337/dc12-0198
Watson, J.D. (2014). Type 2 diabetes as a redox disease. Lancet 383, 841–843.
pubmed: 24581668
doi: 10.1016/S0140-6736(13)62365-X
Weintraub, L.R., Conrad, M.E., and Crosby, W.H. (1965). Regulation of the intestinal absorption of iron by the rate of erythropoiesis. Br J Haematol 11, 432–438.
pubmed: 14317435
doi: 10.1111/j.1365-2141.1965.tb06605.x
Wichmann, A., Allahyar, A., Greiner, T.U., Plovier, H., Lundén, G.Ö., Larsson, T., Drucker, D.J., Delzenne, N.M., Cani, P.D., and Bäckhed, F. (2013). Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 14, 582–590.
pubmed: 24237703
doi: 10.1016/j.chom.2013.09.012
Wu, D., Cao, W., Xiang, D., Hu, Y.P., Luo, B., and Chen, P. (2020a). Exercise induces tissue hypoxia and HIF-1α redistribution in the small intestine. J Sport Health Sci 9, 82–89.
pubmed: 31921483
doi: 10.1016/j.jshs.2019.05.002
Wu, H., Esteve, E., Tremaroli, V., Khan, M.T., Caesar, R., Mannerås-Holm, L., Ståhlman, M., Olsson, L.M., Serino, M., Planas-Fèlix, M., et al. (2017). Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23, 850–858.
pubmed: 28530702
doi: 10.1038/nm.4345
Wu, H., Tremaroli, V., Schmidt, C., Lundqvist, A., Olsson, L.M., Krämer, M., Gummesson, A., Perkins, R., Bergström, G., and Bäckhed, F. (2020b). The gut microbiota in prediabetes and diabetes: a population-based cross-sectional study. Cell Metab 32, 379–390.e3.
pubmed: 32652044
doi: 10.1016/j.cmet.2020.06.011
Zeng, X., Xing, X., Gupta, M., Keber, F.C., Lopez, J.G., Lee, Y.C.J., Roichman, A., Wang, L., Neinast, M.D., Donia, M.S., et al. (2022). Gut bacterial nutrient preferences quantified in vivo. Cell 185, 3441–3456.e19.
pubmed: 36055202
doi: 10.1016/j.cell.2022.07.020
Zhang, H.J., He, J., Pan, L.L., Ma, Z.M., Han, C.K., Chen, C.S., Chen, Z., Han, H.W., Chen, S., Sun, Q., et al. (2016). Effects of moderate and vigorous exercise on nonalcoholic fatty liver disease. JAMA Intern Med 176, 1074–1082.
pubmed: 27379904
doi: 10.1001/jamainternmed.2016.3202
Zhao, L., Ni, Y., Su, M., Li, H., Dong, F., Chen, W., Wei, R., Zhang, L., Guiraud, S.P., Martin, F.P., et al. (2017). High throughput and quantitative measurement of microbial metabolome by gas chromatography/mass spectrometry using automated alkyl chloroformate derivatization. Anal Chem 89, 5565–5577.
pubmed: 28437060
pmcid: 5663283
doi: 10.1021/acs.analchem.7b00660
Zhao, S., Jang, C., Liu, J., Uehara, K., Gilbert, M., Izzo, L., Zeng, X., Trefely, S., Fernandez, S., Carrer, A., et al. (2020). Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 579, 586–591.
pubmed: 32214246
pmcid: 7416516
doi: 10.1038/s41586-020-2101-7