The bioherbicidal potential of isolated fungi cultivated in microalgal biomass.
Biological control
Biotechnological processes
Enzymes
Food safety
Microbial strains
Journal
Bioprocess and biosystems engineering
ISSN: 1615-7605
Titre abrégé: Bioprocess Biosyst Eng
Pays: Germany
ID NLM: 101088505
Informations de publication
Date de publication:
May 2023
May 2023
Historique:
received:
03
10
2022
accepted:
03
02
2023
medline:
10
4
2023
pubmed:
17
2
2023
entrez:
16
2
2023
Statut:
ppublish
Résumé
This study evaluated the bioherbicidal potential of wild fungi grown on microalgal biomass from the digestate treatment of biogas production. Four fungal isolates were used and the extracts were evaluated for the activity of different enzymes and characterized by gas chromatography coupled with mass spectrometry. The bioherbicidal activity was assessed by application on Cucumis sativus, and the leaf damage was visually estimated. The microorganisms showed potential as agents producing an enzyme pool. The obtained fungal extracts presented different organic compounds, most acids, and when applied to Cucumis sativus, showed high levels of leaf damage (80-100 ± 3.00%, deviation relative to the observed average damage). Therefore, the microbial strains are potential biological control agents of weeds, which, together with the microalgae biomass, offer the appropriate conditions to obtain an enzyme pool of biotechnological relevance and with favorable characteristics to be explored as bioherbicides, addressing aspects within the environmental sustainability.
Identifiants
pubmed: 36795191
doi: 10.1007/s00449-023-02852-x
pii: 10.1007/s00449-023-02852-x
doi:
Substances chimiques
Biofuels
0
Plant Extracts
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
665-679Subventions
Organisme : Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
ID : 22/2551-0000397-4
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Macías-Rubalcava ML, Garrido-Santos MY (2022) Phytotoxic compounds from endophytic fungi. Appl Microbiol Biotechnol 106:931–950. https://doi.org/10.1007/s00253-022-11773-w
doi: 10.1007/s00253-022-11773-w
pubmed: 35039926
Perotti VE, Larran AS, Palmieri VE et al (2020) Herbicide resistant weeds: a call to integrate conventional agricultural practices, molecular biology knowledge and new technologies. Plant Sci. https://doi.org/10.1016/j.plantsci.2019.110255
doi: 10.1016/j.plantsci.2019.110255
pubmed: 31779903
Verma D, Banjo T, Chawan M, et al (2020) Microbial Control of Pests and Weeds. In: Natural Remedies for Pest, Disease and Weed Control. Elsevier
FAO (2022) Sustainable Development Goals. https://www.fao.org/sustainable-development-goals/goals/goal-2/en/ . Accessed 12 Apr 2022
Cordeau S, Triolet M, Wayman S et al (2016) Bioherbicides: Dead in the water? a review of the existing products for integrated weed management. Crop Prot 87:44–49. https://doi.org/10.1016/j.cropro.2016.04.016
doi: 10.1016/j.cropro.2016.04.016
Radhakrishnan R, Alqarawi AA, AbdAllah EF (2018) Bioherbicides: Current knowledge on weed control mechanism. Ecotoxicol Environ Saf 158:131–138. https://doi.org/10.1016/j.ecoenv.2018.04.018
doi: 10.1016/j.ecoenv.2018.04.018
pubmed: 29677595
Hasan M, Ahmad-Hamdani MS, Rosli AM, Hamdan H (2021) Bioherbicides: an eco-friendly tool for sustainable weed management. Plants 10:1212. https://doi.org/10.3390/plants10061212
doi: 10.3390/plants10061212
pubmed: 34203650
pmcid: 8232089
Bordin ER, Frumi Camargo A, Rossetto V et al (2018) Non-Toxic bioherbicides obtained from trichoderma koningiopsis can be applied to the control of weeds in agriculture crops. Ind Biotechnol 14:157–163. https://doi.org/10.1089/ind.2018.0007
doi: 10.1089/ind.2018.0007
Adetunji CO, Oloke JK, Bello OM et al (2019) Isolation, structural elucidation and bioherbicidal activity of an eco-friendly bioactive 2-(hydroxymethyl) phenol, from Pseudomonas aeruginosa (C1501) and its ecotoxicological evaluation on soil. Environ Technol Innov 13:304–317. https://doi.org/10.1016/j.eti.2018.12.006
doi: 10.1016/j.eti.2018.12.006
Aita BC, Spannemberg SS, Schmaltz S et al (2019) Production of cell-wall degrading enzymes by solid-state fermentation using agroindustrial residues as substrates. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103193
doi: 10.1016/j.jece.2019.103193
Reichert Júnior FW, Scariot MA, Forte CT et al (2019) New perspectives for weeds control using autochthonous fungi with selective bioherbicide potential. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e01676
doi: 10.1016/j.heliyon.2019.e01676
pubmed: 31193093
pmcid: 6517331
Camargo AF, Venturin B, Bordin ER et al (2020) A low-genotoxicity bioherbicide obtained from trichoderma koningiopsis fermentation in a stirred-tank bioreactor. Ind Biotechnol 16:176–181. https://doi.org/10.1089/ind.2019.0024
doi: 10.1089/ind.2019.0024
Costa JAV, Freitas BCB, Cruz CG et al (2019) Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. J Environ Sci Health B 54:366–375. https://doi.org/10.1080/03601234.2019.1571366
doi: 10.1080/03601234.2019.1571366
pubmed: 30729858
Michelon W, da Silva MLB, Matthiensen A et al (2022) Amino acids, fatty acids, and peptides in microalgae biomass harvested from phycoremediation of swine wastewaters. Biomass Convers Biorefin 12:869–880. https://doi.org/10.1007/s13399-020-01263-2
doi: 10.1007/s13399-020-01263-2
Michelon W, Da Silva MLB, Mezzari MP et al (2016) Effects of nitrogen and phosphorus on biochemical composition of microalgae polyculture harvested from phycoremediation of piggery wastewater digestate. Appl Biochem Biotechnol 178:1407–1419. https://doi.org/10.1007/s12010-015-1955-x
doi: 10.1007/s12010-015-1955-x
pubmed: 26689804
Stefanski FS, Camargo AF, Scapini T, et al (2020) Potential Use of Biological Herbicides in a Circular Economy Context: A Sustainable Approach. Front Sustain Food Syst 4:. https://doi.org/10.3389/fsufs.2020.521102
Camargo AF, Stefanski FS, Scapini T et al (2019) Resistant weeds were controlled by the combined use of herbicides and bioherbicides. Environ Qual Manage 29:37–42. https://doi.org/10.1002/tqem.21643
doi: 10.1002/tqem.21643
Cadete RM, Melo-Cheab MA, Dussán KJ et al (2017) Production of bioethanol in sugarcane bagasse hemicellulosic hydrolysate by Scheffersomyces parashehatae, scheffersomyces illinoinensis and Spathaspora arborariae isolated from Brazilian ecosystems. J Appl Microbiol 123:1203–1213. https://doi.org/10.1111/jam.13559
doi: 10.1111/jam.13559
pubmed: 28799253
Barretto DA, Avchar R, Carvalho C et al (2018) Blastobotrys bombycis sp. nov., a d-xylose-fermenting yeast isolated from the gut of the silkworm larva Bombyx mori. Int J Syst Evol Microbiol 68:2638–2643. https://doi.org/10.1099/ijsem.0.002890
doi: 10.1099/ijsem.0.002890
pubmed: 29949498
Schmitz A, Riesner D (2006) Purification of nucleic acids by selective precipitation with polyethylene glycol 6000. Anal Biochem 354:311–313. https://doi.org/10.1016/j.ab.2006.03.014
doi: 10.1016/j.ab.2006.03.014
pubmed: 16725102
Fuwa H (1954) A new method for microdetermination of amylase activity by the use of amylose as the substrate. J Biochem 41:583–603. https://doi.org/10.1093/oxfordjournals.jbchem.a126476
doi: 10.1093/oxfordjournals.jbchem.a126476
Pongsawadi P, Yagisawa M (1987) Screening and identification of a cyclomaltoxtrinv glucanotransferase-producing bacteria. J Ferment Technol 65:463–467. https://doi.org/10.1016/0385-6380(87)90144-0
doi: 10.1016/0385-6380(87)90144-0
Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268. https://doi.org/10.1351/pac198759020257
doi: 10.1351/pac198759020257
Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030
doi: 10.1021/ac60147a030
Hou H, Zhou J, Wang J et al (2004) Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochem 39:1415–1419. https://doi.org/10.1016/S0032-9592(03)00267-X
doi: 10.1016/S0032-9592(03)00267-X
Treichel H, Sbardelotto M, Venturin B et al (2017) Lipase production from a newly isolated aspergillus niger by solid state fermentation using canola cake as substrate. Curr Biotechnol. https://doi.org/10.2174/2211550105666151124193225
doi: 10.2174/2211550105666151124193225
Khan AA, Robinson DS (1994) Hydrogen donor specificity of mango isoperoxidases. Food Chem 49:407–410. https://doi.org/10.1016/0308-8146(94)90013-2
doi: 10.1016/0308-8146(94)90013-2
Devaiah SP, Shetty HS (2009) Purification of an infection-related acidic peroxidase from pearl millet seedlings. Pestic Biochem Physiol 94:119–126. https://doi.org/10.1016/j.pestbp.2009.04.010
doi: 10.1016/j.pestbp.2009.04.010
Todero I, Confortin TC, Luft L et al (2020) Concentration of exopolysaccharides produced by Fusarium fujikuroi and application of bioproduct as an effective bioherbicide. Environ Technol 41:2742–2749. https://doi.org/10.1080/09593330.2019.1580775
doi: 10.1080/09593330.2019.1580775
pubmed: 30734639
Brazilian Society of Weed Science (1995) Procedures for Installation, Evaluation and Analysis of Experiments with Herbicides
Lerin et al (2010) Microorganisms screening for limonene oxidation. Ciênc Tecnol Aliment 30:399–405
doi: 10.1590/S0101-20612010000200017
Kamoun O, Muralitharan G, Belghith H et al (2019) Suitable carbon sources selection and ranking for biodiesel production by oleaginous Mucor circinelloides using multi-criteria analysis approach. Fuel 257:1–13. https://doi.org/10.1016/j.fuel.2019.116117
doi: 10.1016/j.fuel.2019.116117
Rodrigues P, De O, Gurgel LVA, Pasquini D et al (2020) Lignocellulose-degrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes. Renew Energy 145:2683–2693. https://doi.org/10.1016/j.renene.2019.08.041
doi: 10.1016/j.renene.2019.08.041
Preczeski KP, Dalastra C, Czapela FF et al (2020) Fusarium oxysporum and aspergillus sp. as keratinase producers using swine hair from agroindustrial residues. Front Bioeng Biotechnol 8:1–8. https://doi.org/10.3389/fbioe.2020.00071
doi: 10.3389/fbioe.2020.00071
da Rosa-Garzon NG, Laure HJ, Rosa JC, Cabral H (2019) Fusarium oxysporum cultured with complex nitrogen sources can degrade agricultural residues: evidence from analysis of secreted enzymes and intracellular proteome. Renew Energy 133:941–950. https://doi.org/10.1016/j.renene.2018.10.100
doi: 10.1016/j.renene.2018.10.100
de Oliveira BH, Coradi GV, de Oliva-Netodo Nascimento VMG, P (2020) Biocatalytic benefits of immobilized Fusarium sp. (GFC) lipase from solid state fermentation on free lipase from submerged fermentation. Ind Crops Prod 147:1–10. https://doi.org/10.1016/j.indcrop.2020.112235
doi: 10.1016/j.indcrop.2020.112235
Amoah J, Ho S-H, Hama S et al (2016) Converting oils high in phospholipids to biodiesel using immobilized Aspergillus oryzae whole-cell biocatalysts expressing Fusarium heterosporum lipase. Biochem Eng J 105:10–15. https://doi.org/10.1016/j.bej.2015.08.007
doi: 10.1016/j.bej.2015.08.007
Pessôa MG, Paulino BN, Mano MCR et al (2017) Fusarium species—a promising tool box for industrial biotechnology. Appl Microbiol Biotechnol 101:3493–3511. https://doi.org/10.1007/s00253-017-8255-z
doi: 10.1007/s00253-017-8255-z
pubmed: 28343243
Rodríguez RD, Heredia G, Siles JA et al (2019) Enhancing laccase production by white-rot fungus Funalia floccosa LPSC 232 in co-culture with Penicillium commune GHAIE86. Folia Microbiol (Praha) 64:91–99. https://doi.org/10.1007/s12223-018-0635-y
doi: 10.1007/s12223-018-0635-y
pubmed: 30084087
Li W, Yu J, Li Z, Yin W-B (2019) Rational design for fungal laccase production in the model host Aspergillus nidulans. Sci China Life Sci 62:84–94. https://doi.org/10.1007/s11427-017-9304-8
doi: 10.1007/s11427-017-9304-8
pubmed: 29909473
Kumar AN, Chatterjee S, Hemalatha M et al (2020) Deoiled algal biomass derived renewable sugars for bioethanol and biopolymer production in biorefinery framework. Bioresour Technol 296:1–7. https://doi.org/10.1016/j.biortech.2019.122315
doi: 10.1016/j.biortech.2019.122315
Llamas M, Magdalena JA, Tomás-Pejó E, González-Fernández C (2020) Microalgae-based anaerobic fermentation as a promising technology for producing biogas and microbial oils. Energy 206:1–8. https://doi.org/10.1016/j.energy.2020.118184
doi: 10.1016/j.energy.2020.118184
Chu R, Li S, Zhu L et al (2021) A review on co-cultivation of microalgae with filamentous fungi: efficient harvesting, wastewater treatment and biofuel production. Renew Sustain Energy Rev 139:1–17. https://doi.org/10.1016/j.rser.2020.110689
doi: 10.1016/j.rser.2020.110689
Alamsjah MA, Hirao S, Ishibashi F et al (2008) Algicidal activity of polyunsaturated fatty acids derived from Ulva fasciata and U. pertusa (Ulvaceae, Chlorophyta) on phytoplankton. J Appl Phycol 20:713–720. https://doi.org/10.1007/s10811-007-9257-5
doi: 10.1007/s10811-007-9257-5
Wu J-T, Chiang Y-R, Huang W-Y, Jane W-N (2006) Cytotoxic effects of free fatty acids on phytoplankton algae and cyanobacteria. Aquat Toxicol 80:338–345. https://doi.org/10.1016/j.aquatox.2006.09.011
doi: 10.1016/j.aquatox.2006.09.011
pubmed: 17098300
Li ZR, Amist N, Bai LY (2019) Allelopathy in sustainable weeds management. Allelopath J 48:109–138
doi: 10.26651/allelo.j/2019-48-2-1249
Pardo-Muras M, Puig CG, López-Nogueira A et al (2018) On the bioherbicide potential of Ulex europaeus and Cytisus scoparius: profiles of volatile organic compounds and their phytotoxic effects. PLoS ONE. https://doi.org/10.1371/journal.pone.0205997
doi: 10.1371/journal.pone.0205997
pubmed: 30372468
pmcid: 6205617
Norsworthy JK, Meehan JT (2005) Use of isothiocyanates for suppression of palmer amaranth (Amaranthus palmeri ), pitted morningglory (Ipomoea lacunosa), and yellow nutsedge (Cyperus esculentus). Weed Sci 53:884–890. https://doi.org/10.1614/WS-05-056R.1
doi: 10.1614/WS-05-056R.1
Khanh TD, Chung IM, Tawata S, Xuan TD (2006) Weed suppression by Passiflora edulis and its potential allelochemicals. Weed Res 46:296–303. https://doi.org/10.1111/j.1365-3180.2006.00512.x
doi: 10.1111/j.1365-3180.2006.00512.x
Ulloa-Benítez Á, Medina-Romero YM, Sánchez-Fernández RE et al (2016) Phytotoxic and antimicrobial activity of volatile and semi-volatile organic compounds from the endophyte Hypoxylon anthochroum strain Blaci isolated from Bursera lancifolia (Burseraceae). J Appl Microbiol 121:380–400. https://doi.org/10.1111/jam.13174
doi: 10.1111/jam.13174
pubmed: 27159426
Triolet M, Guillemin J, Andre O, Steinberg C (2020) Fungal-based bioherbicides for weed control: a myth or a reality? Weed Res 60:60–77. https://doi.org/10.1111/wre.12389
doi: 10.1111/wre.12389
Michalak I, Chojnacka K (2015) Algae as production systems of bioactive compounds. Eng Life Sci 15:160–176. https://doi.org/10.1002/elsc.201400191
doi: 10.1002/elsc.201400191
Tubeileh AM, Souikane RT (2020) Effect of olive vegetation water and compost extracts on seed germination of four weed species. Curr Plant Biol 22:1–6. https://doi.org/10.1016/j.cpb.2020.100150
doi: 10.1016/j.cpb.2020.100150
Mutale-joan C, Redouane B, Najib E et al (2020) Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Sci Rep 10:2820. https://doi.org/10.1038/s41598-020-59840-4
doi: 10.1038/s41598-020-59840-4
pubmed: 32071360
pmcid: 7028939
Mzibra A, Aasfar A, Benhima R et al (2021) Biostimulants derived from moroccan seaweeds: seed germination metabolomics and Growth promotion of tomato plant. J Plant Growth Regul 40:353–370. https://doi.org/10.1007/s00344-020-10104-5
doi: 10.1007/s00344-020-10104-5