Cobalt exposure and dyslipidemia in elderly population: the mediating role of systemic inflammation and lipid peroxidation.
8-Iso-PGF2α
Cobalt
Cross-sectional study
Dyslipidemia
TNF-α
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Apr 2023
Apr 2023
Historique:
received:
13
10
2022
accepted:
09
02
2023
medline:
18
4
2023
pubmed:
17
2
2023
entrez:
16
2
2023
Statut:
ppublish
Résumé
Heavy metal exposure has been reported to be correlated with lipid profile alteration and dyslipidemia. While the associations between serum cobalt (Co) with lipid profile levels and risk of dyslipidemia have not been explored in elderly population, and the underlying mechanisms remain unclear. All eligible 420 elderly people were recruited in three communities of Hefei City in this cross-sectional study. Peripheral blood samples and clinical information were collected. The level of serum Co was detected through ICP-MS. The biomarkers for systemic inflammation (TNF-α) and lipid peroxidation (8-iso-PGF2α) were measured with ELISA. Each 1-unit increase of serum Co was related with 0.513 mmol/L, 0.196 mmol/L, 0.571 mmol/L, and 0.303 g/L in TC, TG, LDL-C, and ApoB, respectively. Multivariate linear and logistic regression analyses indicated that the prevalence of elevated TC, elevated LDL-C, and elevated ApoB were gradually increased according to tertiles of serum Co concentration (all P trend < 0.001). The risk of dyslipidemia was positively correlated with serum Co (OR = 3.500; 95% CI 1.630 ~ 7.517). Moreover, the levels of TNF-α and 8-iso-PGF2α were gradually risen in parallel with elevating serum Co. The elevation of TNF-α and 8-iso-PGF2α partially mediated Co-caused elevation of TC and LDL-C. Environmental Co exposure is associated with elevated lipid profile levels and dyslipidemia risk among elderly population. Systemic inflammation and lipid peroxidation partially mediate the associations of serum Co with dyslipidemia.
Identifiants
pubmed: 36795209
doi: 10.1007/s11356-023-25910-z
pii: 10.1007/s11356-023-25910-z
doi:
Substances chimiques
Apolipoproteins B
0
Cholesterol, LDL
0
Cobalt
3G0H8C9362
Lipids
0
Tumor Necrosis Factor-alpha
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
50402-50411Subventions
Organisme : National Natural Science Foundation of China
ID : 82100078
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Akash MSH, Rehman K, Liaqat A (2018) Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J Cell Biochem 119(1):105–110. https://doi.org/10.1002/jcb.26174
doi: 10.1002/jcb.26174
Aminuddin A, Lazim MRMLM, Hamid AA, Hui CK, Mohd Yunus MH, Kumar J, Ugusman A (2020) The association between inflammation and pulse wave velocity in dyslipidemia: an evidence-based review. Mediat Inflamm 2020:4732987. https://doi.org/10.1155/2020/4732987
doi: 10.1155/2020/4732987
Arca M, Montali A, Valiante S, Campagna F, Pigna G, Paoletti V, Antonini R, Barillà F, Tanzilli G, Vestri A, Gaudio C (2007) Usefulness of atherogenic dyslipidemia for predicting cardiovascular risk in patients with angiographically defined coronary artery disease. Am J Cardiol 100(10):1511–1516. https://doi.org/10.1016/j.amjcard.2007.06.049
doi: 10.1016/j.amjcard.2007.06.049
Barceloux DG (1999) Cobalt. J Toxicol Clin Toxicol 37(2):201–206. https://doi.org/10.1081/clt-100102420
doi: 10.1081/clt-100102420
Braun JM, Gennings C, Hauser R, Webster TF (2016) What can epidemiological studies tell us about the impact of chemical mixtures on human health? Environ Health Perspect 124(1):A6-9. https://doi.org/10.1289/ehp.1510569
doi: 10.1289/ehp.1510569
Chen TH, Huang JJ, Kung WS, Lee SS, Sun HY, Chuang HY (2019) The association of serum TNF-α levels and blood multi-elements modified by TNF-α gene polymorphisms in metal industrial workers. Int J Environ Res Public Health 16(21):4079. https://doi.org/10.3390/ijerph16214079
doi: 10.3390/ijerph16214079
Dankner R, Ben Avraham S, Harats D, Chetrit A (2020) ApoE genotype, lipid profile, exercise, and the associations with cardiovascular morbidity and 18-year mortality. J Gerontol A Biol Sci Med Sci 75(10):1887–1893. https://doi.org/10.1093/gerona/glz232
doi: 10.1093/gerona/glz232
Fei J, Fu L, Cao W, Hu B, Zhao H, Li JB (2019) Low vitamin D status is associated with epithelial-mesenchymal transition in patients with chronic obstructive pulmonary disease. J Immunol 203(6):1428–1435. https://doi.org/10.4049/jimmunol.1900229
doi: 10.4049/jimmunol.1900229
Fu L, Fei J, Tan ZX, Chen YH, Hu B, Xiang HX, Zhao H, Xu DX (2021) Low vitamin D status is associated with inflammation in patients with chronic obstructive pulmonary disease. J Immunol 206(3):515–523. https://doi.org/10.4049/jimmunol.2000964
doi: 10.4049/jimmunol.2000964
Fu L, Zhao H, Xiang Y, Xiang HX, Hu B, Tan ZX, Lu X, Gao L, Wang B, Wang H, Zhang C, Xu DX (2021) Reactive oxygen species-evoked endoplasmic reticulum stress mediates 1-nitropyrene-induced epithelial-mesenchymal transition and pulmonary fibrosis. Environ Pollut 283:117134. https://doi.org/10.1016/j.envpol.2021.117134
doi: 10.1016/j.envpol.2021.117134
Ge X, Ye G, He J, Bao Y, Zheng Y, Cheng H, Feng X, Yang W, Wang F, Zou Y, Yang X (2021) Metal mixtures with longitudinal changes in lipid profiles: findings from the manganese-exposed workers healthy cohort. Environ Sci Pollut Res Int 29(56):85103–85113. https://doi.org/10.1007/s11356-022-21653-5 .
Hokin B, Adams M, Ashton J, Louie H (2004) Comparison of the dietary cobalt intake in three different Australian diets. Asia Pac J Clin Nutr 13(3):289–291
Jiang Q, Xiao Y, Long P, Li W, Yu Y, Liu Y, Liu K, Zhou L, Wang H, Yang H, Li X, He M, Wu T, Yuan Y (2021) Associations of plasma metal concentrations with incident dyslipidemia: prospective findings from the Dongfeng-Tongji cohort. Chemosphere 285:131497. https://doi.org/10.1016/j.chemosphere.2021.131497
doi: 10.1016/j.chemosphere.2021.131497
Joint committee for guideline revision (2018) 2016 Chinese guidelines for the management of dyslipidemia in adults. J Geriatr Cardiol 15(1):1–29. https://doi.org/10.11909/j.issn.1671-5411.2018.01.011
doi: 10.11909/j.issn.1671-5411.2018.01.011
Jung UJ, Choi MS (2014) Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 15(4):6184–6223. https://doi.org/10.3390/ijms15046184
doi: 10.3390/ijms15046184
Kopin L, Lowenstein C (2010) In the clinic. Dyslipidemia. Ann Intern Med 153(3):ITC21. https://doi.org/10.7326/0003-4819-153-3-201008030-01002
doi: 10.7326/0003-4819-153-3-201008030-01002
Kubrak OI, Husak VV, Rovenko BM, Storey JM, Storey KB, Lushchak VI (2011) Cobalt-induced oxidative stress in brain, liver and kidney of goldfish Carassius auratus. Chemosphere 85(6):983–989. https://doi.org/10.1016/j.chemosphere.2011.06.078
doi: 10.1016/j.chemosphere.2011.06.078
Leyssens L, Vinck B, Van Der Straeten C, De Smet K, Dhooge I, Wuyts FL, Keppler H, Degeest S, Valette R, Lim R, Maes L (2020) The ototoxic potential of cobalt from metal-on-metal hip implants: objective auditory and vestibular outcome. Ear Hear 41(1):217–230. https://doi.org/10.1097/AUD.0000000000000747
doi: 10.1097/AUD.0000000000000747
Li J, Wang J, Wang YL, Luo Z, Zheng C, Yu G, Wu S, Zheng F, Li H (2021) NOX2 activation contributes to cobalt nanoparticles-induced inflammatory responses and Tau phosphorylation in mice and microglia. Ecotoxicol Environ Saf 225:112725. https://doi.org/10.1016/j.ecoenv.2021.112725
doi: 10.1016/j.ecoenv.2021.112725
Li Z, Wang Z, Xue K, Wang Z, Guo C, Qian Y, Li X, Wei Y (2021) High concentration of blood cobalt is associated with the impairment of blood-brain barrier permeability. Chemosphere 273:129579. https://doi.org/10.1016/j.chemosphere.2021.129579
doi: 10.1016/j.chemosphere.2021.129579
Liu A, Xu P, Gong C, Zhu Y, Zhang H, Nie W, Zhou X, Liang X, Xu Y, Huang C, Liu XL, Zhou JC (2020) High serum concentration of selenium, but not calcium, cobalt, copper, iron, and magnesium, increased the risk of both hyperglycemia and dyslipidemia in adults: a health examination center based cross-sectional study. J Trace Elem Med Biol 59:126470. https://doi.org/10.1016/j.jtemb.2020.126470
doi: 10.1016/j.jtemb.2020.126470
Lucchi T (2021) Dyslipidemia and prevention of atherosclerotic cardiovascular disease in the elderly. Minerva Med 112(6):804–816. https://doi.org/10.23736/S0026-4806.21.07347-X
doi: 10.23736/S0026-4806.21.07347-X
Mure K, Yoshimura N, Hashimoto M, Muraki S, Oka H, Tanaka S, Kawaguchi H, Nakamura K, Akune T, Takeshita T (2015) Urinary 8-iso-prostaglandin F2α as a marker of metabolic risks in the general Japanese population: the ROAD study. Obesity (Silver Spring) 23(7):1517–1524. https://doi.org/10.1002/oby.21130
doi: 10.1002/oby.21130
Na X, Chen Y, Ma X, Wang D, Wang H, Song Y, Hua Y, Wang P, Liu A (2021) Relations of lifestyle behavior clusters to dyslipidemia in China: a compositional data analysis. Int J Environ Res Public Health 18(15):7763. https://doi.org/10.3390/ijerph18157763
doi: 10.3390/ijerph18157763
O’Leary F, Samman S (2010) Vitamin B12 in health and disease. Nutrients 2(3):299–316. https://doi.org/10.3390/nu2030299
doi: 10.3390/nu2030299
Otvos JD, Mora S, Shalaurova I, Greenland P, Mackey RH, Goff DC Jr (2011) Clinical implications of discordance between low-density lipoprotein cholesterol and particle number. J Clin Lipidol 5(2):105–113. https://doi.org/10.1016/j.jacl.2011.02.001
doi: 10.1016/j.jacl.2011.02.001
Ou SM, Chen YT, Shih CJ, Tarng DC (2017) Impact of physical activity on the association between lipid profiles and mortality among older people. Sci Rep 7(1):8399. https://doi.org/10.1038/s41598-017-07857-7
doi: 10.1038/s41598-017-07857-7
Oyagbemi AA, Akinrinde AS, Adebiyi OE, Jarikre TA, Omobowale TO, Ola-Davies OE, Saba AB, Emikpe BO, Adedapo AA (2020) Luteolin supplementation ameliorates cobalt-induced oxidative stress and inflammation by suppressing NF-кB/Kim-1 signaling in the heart and kidney of rats. Environ Toxicol Pharmacol 80:103488. https://doi.org/10.1016/j.etap.2020.103488
doi: 10.1016/j.etap.2020.103488
Patel R, Palit SP, Rathwa N, Ramachandran AV, Begum R (2019) Genetic variants of tumor necrosis factor-α and its levels: a correlation with dyslipidemia and type 2 diabetes susceptibility. Clin Nutr 38(3):1414–1422. https://doi.org/10.1016/j.clnu.2018.06.962
doi: 10.1016/j.clnu.2018.06.962
Pirillo A, Casula M, Olmastroni E, Norata GD, Catapano AL (2021) Global epidemiology of dyslipidaemias. Nat Rev Cardiol 18(10):689–700. https://doi.org/10.1038/s41569-021-00541-4
doi: 10.1038/s41569-021-00541-4
Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V (2019) Obesity and dyslipidemia. Metabolism 92:71–81. https://doi.org/10.1016/j.metabol.2018.11.005
doi: 10.1016/j.metabol.2018.11.005
Wang T, Sun Z, Wang Y, Li F, Zhou X, Tian X, Wang S (2020) Diagnosis of papillary thyroid carcinoma by 1H NMR spectroscopy-based metabolomic analysis of whole blood. Drug Discov Ther 14(4):187–196. https://doi.org/10.5582/ddt.2020.03062
doi: 10.5582/ddt.2020.03062
Xiao HB, Liang L, Luo ZF, Sun ZL (2018) Paeoniflorin regulates GALNT2-ANGPTL3-LPL pathway to attenuate dyslipidemia in mice. Eur J Pharmacol 836:122–128. https://doi.org/10.1016/j.ejphar.2018.08.006
doi: 10.1016/j.ejphar.2018.08.006
Xu H, Mao Y, Xu B, Hu Y (2021) Low-level environmental lead and cadmium exposures and dyslipidemia in adults: findings from the NHANES 2005–2016. J Trace Elem Med Biol 63:126651. https://doi.org/10.1016/j.jtemb.2020.126651
doi: 10.1016/j.jtemb.2020.126651
Yamada S, Jinnin M, Kajihara I, Nakashima T, Aoi J, Harada M, Igata T, Masuguchi S, Fukushima S, Ihn H (2016) Cytokine expression profiles in the sera of cutaneous squamous cell carcinoma patients. Drug Discov Ther 10(3):172–176. https://doi.org/10.5582/ddt.2016.01032
doi: 10.5582/ddt.2016.01032
Yeung E, Daniels SR, Patel SS (2021) Dyslipidemia in childhood and adolescence: from screening to management. Curr Opin Endocrinol Diabetes Obes 28(2):152–158. https://doi.org/10.1097/MED.0000000000000607
doi: 10.1097/MED.0000000000000607
Zhou Z, Lu YH, Pi HF, Gao P, Li M, Zhang L, Pei LP, Mei X, Liu L, Zhao Q, Qin QZ, Chen Y, Jiang YM, Zhang ZH, Yu ZP (2016) Cadmium exposure is associated with the prevalence of dyslipidemia. Cell Physiol Biochem 40(3–4):633–643. https://doi.org/10.1159/000452576
doi: 10.1159/000452576
Zhu X, Fan Y, Sheng J, Gu L, Tao Q, Huang R, Liu K, Yang L, Chen G, Cao H, Li K, Tao F, Wang S (2021) Association between blood heavy metal concentrations and dyslipidemia in the elderly. Biol Trace Elem Res 199(4):1280–1290. https://doi.org/10.1007/s12011-020-02270-0
doi: 10.1007/s12011-020-02270-0