Antibody Immobilization.

Antibody Biotin Chemistry Coupling Density Immobilization Oriented Passive Protein A Random Solid phase Steric hindrance Streptavidin

Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2023
Historique:
entrez: 16 2 2023
pubmed: 17 2 2023
medline: 22 2 2023
Statut: ppublish

Résumé

In the ELISA format(s), the capture antibody is usually affixed to a solid phase, commonly referred to as the immunosorbent. How to tether the antibody most effectively will depend upon the physical properties of the support (plate well, latex bead, flow cell, etc.) as well as its chemical nature (hydrophobic, hydrophilic, the presence of reactive groups such as epoxide, etc.). Of course, it is ultimately the suitability of the antibody to withstand the linking process while preserving its antigen-binding efficiency that must be determined. In this chapter, the antibody immobilization processes and their consequences are described.

Identifiants

pubmed: 36795357
doi: 10.1007/978-1-0716-2903-1_3
doi:

Substances chimiques

Antibodies 0
Biotin 6SO6U10H04
Streptavidin 9013-20-1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

33-44

Informations de copyright

© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Butler JE, Ni L, Nessler R, Joshi KS, Suter M et al (1992) The physical and functional behavior of capture antibodies adsorbed on polystyrene. J Immunol Methods 150:77–90
doi: 10.1016/0022-1759(92)90066-3 pubmed: 1613260
Kausaite-Minkstimiene A, Ramanaviciene A, Kirlyte J, Ramanavicius A (2010) Comparative study of random and oriented antibody immobilization techniques on the binding capacity of Immunosensor. Anal Chem 82:6401–6408
doi: 10.1021/ac100468k pubmed: 20669994
Matson RS, Little MC (1988) Strategy for the immobilization of monoclonal antibodies on solid phase supports. J Chromatogr 458:67–77
doi: 10.1016/S0021-9673(00)90554-5 pubmed: 3235642
Susini V, Fierabracci V, Barria G, Dodoli L et al (2021) Signal enhancement in oriented immunosorbent assays: a balance between accessibility of antigen binding sites and avidity. Biosensor 11:1–10. https://doi.org/10.3390/bios11120493
doi: 10.3390/bios11120493
Sonawane MD, Nimse SB (2016) Surface modification chemistries of materials used in diagnostic platforms with biomolecules. J Chem 2016:1–19. https://doi.org/10.1155/2016/9241378
doi: 10.1155/2016/9241378
Welch NG, Scoble JA, Muir BW et al (2017) Orientation and characterization of immobilized antibodies for improved immunoassays (review). Biointerphases 12:02D301. https://doi.org/10.1116/1.4978435
doi: 10.1116/1.4978435 pubmed: 28301944
Gao S, Guisan JM, Rocha-Martin J (2022) Oriented immobilization of antibodies onto sensing platforms – a critical review. Anal Chim Acta 1189:1–24. https://doi.org/10.1016/j.aca.2021.338907
doi: 10.1016/j.aca.2021.338907
Vashist SK, Schneider EM, Lam E, Hrapovic S, Luong JHT (2014) One-step antibody immobilization-based rapid and highly sensitive sandwich ELISA procedure for potential in vitro diagnostics. Sci Rep 4:4407. https://doi.org/10.1038/srep04407
doi: 10.1038/srep04407 pubmed: 24638258 pmcid: 3957147
Bergeron AB, Bortz CJ, Rossi A (2018) Corning® medium and high binding ELISA microplates for select target size binding assays. Application note CLS-AN-497, corning incorporated
Lu D, Yang C, Liu Z (2012) How hydrophobicity and the glycosylation site of Glycans affect protein folding and stability: a molecular dynamics simulation. J Phys Chem B 2012(116):390–400. https://doi.org/10.1021/jp203926r
doi: 10.1021/jp203926r
Subedi GP, Barb AW (2015) The structural role of antibody N-glycosylation in receptor interactions. Structure 23(9):1573–1583. https://doi.org/10.1016/j.str.2015.06.015
doi: 10.1016/j.str.2015.06.015 pubmed: 26211613 pmcid: 4558368
https://www.agrisera.com/en/info/molecular-weight-and-isoelectric-point-of-various-immunoglobulins.html
Choe W, Durgannavar TA, Chung SJ (2016) Fc-binding ligands of immunoglobulin G: an overview of high affinity proteins and peptides. Materials 9:1–17. https://doi.org/10.3390/ma9120994
doi: 10.3390/ma9120994
Wang TT (2019) IgG fc glycosylation in human immunity. Curr Top Microbiol Immunol 423:63–75. https://doi.org/10.1007/82_2019_152
doi: 10.1007/82_2019_152 pubmed: 30805712 pmcid: 7853246
Jankun J (2011) Protein-based nanotechnology: antibody conjugated with photosensitizer in targeted anticancer photoimmunotherapy. Int J Oncol 39:949–953
pubmed: 21725592
Bondt A, Rombouts Y, Selman MHJ, Hensbergen PJ et al (2014) Immunoglobulin G (IgG) fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol Cell Proteomics 13(11):3029–3039
doi: 10.1074/mcp.M114.039537 pubmed: 25004930 pmcid: 4223489
Xu H, Lu JR, Williams DE (2006) Effect of surface packing density of Interfacially adsorbed monoclonal antibody on the binding of hormonal antigen human chorionic gonadotrophin. J Phys Chem B 110:1907–1914
doi: 10.1021/jp0538161 pubmed: 16471762

Auteurs

Robert S Matson (RS)

QuantiScientifics LLC, Orange, CA, USA. rsmatson@quantiscientifics.com.

Articles similaires

Humans COVID-19 Immunoglobulin G Antibodies, Viral SARS-CoV-2
Humans Milk, Human Latex Fixation Tests Lactoferrin Female

Measurement of α-synuclein as protein cargo in plasma extracellular vesicles.

Tal Gilboa, Dmitry Ter-Ovanesyan, Shih-Chin Wang et al.
1.00
alpha-Synuclein Extracellular Vesicles Humans Phosphorylation Parkinson Disease

Classifications MeSH