Characterizing the Self-Assembly Properties of Monoolein Lipid Isosteres.
Journal
The journal of physical chemistry. B
ISSN: 1520-5207
Titre abrégé: J Phys Chem B
Pays: United States
ID NLM: 101157530
Informations de publication
Date de publication:
02 03 2023
02 03 2023
Historique:
pubmed:
17
2
2023
medline:
4
3
2023
entrez:
16
2
2023
Statut:
ppublish
Résumé
Living cells feature lipid compartments which exhibit a variety of shapes and structures that assist essential cellular processes. Many natural cell compartments frequently adopt convoluted nonlamellar lipid architectures that facilitate specific biological reactions. Improved methods for controlling the structural organization of artificial model membranes would facilitate investigations into how membrane morphology affects biological functions. Monoolein (MO) is a single-chain amphiphile which forms nonlamellar lipid phases in aqueous solution and has wide applications in nanomaterial development, the food industry, drug delivery, and protein crystallization. However, even if MO has been extensively studied, simple isosteres of MO, while readily accessible, have seen limited characterization. An improved understanding of how relatively minor changes in lipid chemical structure affect self-assembly and membrane topology could instruct the construction of artificial cells and organelles for modeling biological structures and facilitate nanomaterial-based applications. Here, we investigate the differences in self-assembly and large-scale organization between MO and two MO lipid isosteres. We show that replacing the ester linkage between the hydrophilic headgroup and hydrophobic hydrocarbon chain with a thioesther or amide functional group results in the assembly of lipid structures with different phases not resembling those formed by MO. Using light and cryo-electron microscopy, small-angle X-ray scattering, and infrared spectroscopy, we demonstrate differences in the molecular ordering and large-scale architectures of the self-assembled structures made from MO and its isosteric analogues. These results improve our understanding of the molecular underpinnings of lipid mesophase assembly and may facilitate the development of MO-based materials for biomedicine and as model lipid compartments.
Identifiants
pubmed: 36795462
doi: 10.1021/acs.jpcb.2c07215
pmc: PMC9986874
doi:
Substances chimiques
monoolein
C4YAD5F5G6
Glycerides
0
Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1771-1779Références
Phys Chem Chem Phys. 2011 Feb 28;13(8):3004-21
pubmed: 21183976
Nat Mater. 2005 Oct;4(10):729-40
pubmed: 16195765
Biophys J. 1996 Feb;70(2):626-36
pubmed: 8789081
Nanoscale. 2019 Nov 28;11(44):21291-21301
pubmed: 31667477
J Lipid Res. 2007 Aug;48(8):1689-700
pubmed: 17485728
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Angew Chem Int Ed Engl. 2019 Mar 4;58(10):2958-2978
pubmed: 29926520
Adv Mater. 2019 Aug;31(35):e1900818
pubmed: 31222858
Langmuir. 2005 Mar 15;21(6):2569-77
pubmed: 15752054
ACS Nano. 2019 Jun 25;13(6):6178-6206
pubmed: 31082192
Adv Colloid Interface Sci. 2014 Jul;209:127-43
pubmed: 24685272
Acc Chem Res. 2020 Sep 15;53(9):1860-1868
pubmed: 32866390
Nanoscale Horiz. 2020 Jun 1;5(6):914-927
pubmed: 32322863
J Phys Chem B. 2009 Jul 30;113(30):10196-209
pubmed: 19572621
J Agric Food Chem. 2000 Oct;48(10):4808-16
pubmed: 11052737
ACS Nano. 2019 Jul 23;13(7):7396-7401
pubmed: 31298028
Chem Soc Rev. 2012 Feb 7;41(3):1297-322
pubmed: 21975366
Langmuir. 2015 Nov 24;31(46):12770-6
pubmed: 26513646
ACS Appl Mater Interfaces. 2018 Feb 7;10(5):5114-5124
pubmed: 29313658
Proc Natl Acad Sci U S A. 2001 Mar 27;98(7):3633-5
pubmed: 11274378
Chembiochem. 2022 Mar 4;23(5):e202100624
pubmed: 34936727
Phys Rev B Condens Matter. 1986 Jun 15;33(12):8822-8824
pubmed: 9938299
J Phys Chem B. 2007 Sep 13;111(36):10713-22
pubmed: 17705418
Int J Pharm. 2011 Dec 12;421(1):176-82
pubmed: 21963475
Langmuir. 2019 Jan 8;35(1):120-127
pubmed: 30517017
J Chem Phys. 2021 May 7;154(17):170901
pubmed: 34241044
J Cell Biol. 2006 Jun 19;173(6):839-44
pubmed: 16785319
Nat Plants. 2021 Apr;7(4):514-523
pubmed: 33875833
Methods Enzymol. 2002;343:183-99
pubmed: 11665567
Drug Discov Today. 2016 May;21(5):789-801
pubmed: 26780385
J Org Chem. 2012 Dec 7;77(23):10583-95
pubmed: 23121640
Phys Chem Chem Phys. 2006 Nov 21;8(43):4957-75
pubmed: 17091149
J Struct Biol. 2005 Oct;152(1):36-51
pubmed: 16182563
Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098-3100
pubmed: 9900728
Int Rev Cell Mol Biol. 2009;274:275-342
pubmed: 19349040
Adv Colloid Interface Sci. 2009 Mar-Jun;147-148:333-42
pubmed: 18804754
Nature. 2003 Apr 17;422(6933):746-52
pubmed: 12700768
J Cell Biol. 2003 Oct 27;163(2):257-69
pubmed: 14581454
Nanoscale. 2014 Jun 21;6(12):6853-9
pubmed: 24831024
Nat Commun. 2015 Nov 17;6:8915
pubmed: 26573367
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18206-18215
pubmed: 32694212
J Am Chem Soc. 2021 Jun 9;143(22):8223-8231
pubmed: 34014081
J Microsc. 2006 Feb;221(Pt 2):110-21
pubmed: 16499550
ACS Nano. 2019 May 28;13(5):5439-5450
pubmed: 31074603
Trends Cell Biol. 2015 Mar;25(3):112-24
pubmed: 25466831
Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14532-5
pubmed: 8962086
Nat Methods. 2019 Nov;16(11):1146-1152
pubmed: 31591575
J Mater Chem B. 2022 May 25;10(20):3876-3885
pubmed: 35470843
Biophys J. 1991 Jul;60(1):179-89
pubmed: 1883937