Precision of CT-derived alveolar recruitment assessed by human observers and a machine learning algorithm in moderate and severe ARDS.

Acute respiratory distress syndrome Alveolar recruitment Bias Computed tomography Machine learning Measurement error Repeatability Reproducibility

Journal

Intensive care medicine experimental
ISSN: 2197-425X
Titre abrégé: Intensive Care Med Exp
Pays: Germany
ID NLM: 101645149

Informations de publication

Date de publication:
17 Feb 2023
Historique:
received: 21 10 2022
accepted: 24 01 2023
entrez: 16 2 2023
pubmed: 17 2 2023
medline: 17 2 2023
Statut: epublish

Résumé

Assessing measurement error in alveolar recruitment on computed tomography (CT) is of paramount importance to select a reliable threshold identifying patients with high potential for alveolar recruitment and to rationalize positive end-expiratory pressure (PEEP) setting in acute respiratory distress syndrome (ARDS). The aim of this study was to assess both intra- and inter-observer smallest real difference (SRD) exceeding measurement error of recruitment using both human and machine learning-made lung segmentation (i.e., delineation) on CT. This single-center observational study was performed on adult ARDS patients. CT were acquired at end-expiration and end-inspiration at the PEEP level selected by clinicians, and at end-expiration at PEEP 5 and 15 cmH Thirteen patients were included, of whom 11 (85%) presented a severe ARDS. Intra- and inter-observer measurements of recruitment were virtually unbiased, with 95% confidence intervals (CI The SRD exceeding intra-observer experimental error in the measurement of alveolar recruitment may be conservatively set to 5% (i.e., the upper value of the CI

Sections du résumé

BACKGROUND BACKGROUND
Assessing measurement error in alveolar recruitment on computed tomography (CT) is of paramount importance to select a reliable threshold identifying patients with high potential for alveolar recruitment and to rationalize positive end-expiratory pressure (PEEP) setting in acute respiratory distress syndrome (ARDS). The aim of this study was to assess both intra- and inter-observer smallest real difference (SRD) exceeding measurement error of recruitment using both human and machine learning-made lung segmentation (i.e., delineation) on CT. This single-center observational study was performed on adult ARDS patients. CT were acquired at end-expiration and end-inspiration at the PEEP level selected by clinicians, and at end-expiration at PEEP 5 and 15 cmH
RESULTS RESULTS
Thirteen patients were included, of whom 11 (85%) presented a severe ARDS. Intra- and inter-observer measurements of recruitment were virtually unbiased, with 95% confidence intervals (CI
CONCLUSIONS CONCLUSIONS
The SRD exceeding intra-observer experimental error in the measurement of alveolar recruitment may be conservatively set to 5% (i.e., the upper value of the CI

Identifiants

pubmed: 36797424
doi: 10.1186/s40635-023-00495-6
pii: 10.1186/s40635-023-00495-6
pmc: PMC9934943
doi:

Types de publication

Journal Article

Langues

eng

Pagination

8

Informations de copyright

© 2023. The Author(s).

Références

Crit Care Med. 2019 Sep;47(9):1177-1183
pubmed: 31419216
Front Physiol. 2022 Feb 04;12:725865
pubmed: 35185592
Med Image Anal. 2020 Feb;60:101592
pubmed: 31760194
Intensive Care Med. 2010 Nov;36(11):1836-44
pubmed: 20689909
JAMA. 2012 Jun 20;307(23):2526-33
pubmed: 22797452
Intensive Care Med. 2013 Jan;39(1):66-73
pubmed: 22990871
JAMA. 1993 Dec 22-29;270(24):2957-63
pubmed: 8254858
BMJ. 1996 Jun 29;312(7047):1654
pubmed: 8664723
N Engl J Med. 2000 May 4;342(18):1301-8
pubmed: 10793162
Intensive Care Med. 2022 Aug;48(8):995-1008
pubmed: 35833958
IEEE Trans Med Imaging. 2009 Aug;28(8):1251-65
pubmed: 19211338
Stat Methods Med Res. 2015 Feb;24(1):107-40
pubmed: 24919828
Am Rev Respir Dis. 1987 Sep;136(3):730-6
pubmed: 3307572
Am J Respir Crit Care Med. 2007 Jan 15;175(2):160-6
pubmed: 17038660
JAMA. 2016 Feb 23;315(8):788-800
pubmed: 26903337
N Engl J Med. 2004 Jul 22;351(4):327-36
pubmed: 15269312
Stat Methods Med Res. 1999 Jun;8(2):135-60
pubmed: 10501650
Front Physiol. 2021 Sep 14;12:676118
pubmed: 34594233
N Engl J Med. 2006 Apr 27;354(17):1775-86
pubmed: 16641394
Crit Care. 2022 Jul 2;26(1):195
pubmed: 35780154
Biom J. 2008 Jun;50(3):346-63
pubmed: 18481363
Intensive Care Med. 2012 Oct;38(10):1573-82
pubmed: 22926653
Crit Care. 2021 Feb 24;25(1):81
pubmed: 33627160
Acta Anaesthesiol Scand. 2004 Oct;48(9):1123-9
pubmed: 15352958
PLoS One. 2013 Sep 09;8(9):e73990
pubmed: 24040139
Intensive Care Med. 2008 Nov;34(11):2044-53
pubmed: 18537024
Anesthesiology. 1988 Dec;69(6):824-32
pubmed: 3057937
Intensive Care Med. 1996 Jul;22(7):707-10
pubmed: 8844239
Lancet Respir Med. 2019 Oct;7(10):870-880
pubmed: 31399381

Auteurs

Ludmilla Penarrubia (L)

Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1294, Université de Lyon, Villeurbanne, France.

Aude Verstraete (A)

Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004, Lyon, France.

Maciej Orkisz (M)

Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1294, Université de Lyon, Villeurbanne, France.

Eduardo Davila (E)

Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1294, Université de Lyon, Villeurbanne, France.

Loic Boussel (L)

Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1294, Université de Lyon, Villeurbanne, France.
Service de Radiologie, Hôpital De La Croix Rousse, Hospices Civils de Lyon, Lyon, France.

Hodane Yonis (H)

Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004, Lyon, France.

Mehdi Mezidi (M)

Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004, Lyon, France.

Francois Dhelft (F)

Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004, Lyon, France.
Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France.

William Danjou (W)

Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004, Lyon, France.

Alwin Bazzani (A)

Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004, Lyon, France.

Florian Sigaud (F)

Service de Médecine-Intensive Réanimation, CHU Grenoble-Alpes, Grenoble, France.

Sam Bayat (S)

Synchrotron Radiation for Biomedicine Laboratory (STROBE), INSERM UA07, Univ. Grenoble Alpes, Grenoble, France.
Department of Pulmonology and Physiology, Grenoble University Hospital, Grenoble, France.

Nicolas Terzi (N)

Maladies Infectieuses et Réanimation Médicale, CHU Rennes, Rennes, France.
Faculté de Médecine, Biosit, Université Rennes1, Rennes, France.
INSERM-CIC-1414, Faculté de Médecine, IFR 140, Université Rennes I, Rennes, France.

Mehdi Girard (M)

Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004, Lyon, France.

Laurent Bitker (L)

Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1294, Université de Lyon, Villeurbanne, France.
Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004, Lyon, France.

Emmanuel Roux (E)

Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1294, Université de Lyon, Villeurbanne, France.

Jean-Christophe Richard (JC)

Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, INSERM, CREATIS UMR 5220, U1294, Université de Lyon, Villeurbanne, France. j-christophe.richard@chu-lyon.fr.
Service de Médecine Intensive Réanimation, Hôpital de la Croix Rousse, Hospices Civils de Lyon, 103 Grande Rue de La Croix Rousse, 69004, Lyon, France. j-christophe.richard@chu-lyon.fr.

Classifications MeSH