Molecular Alignment-Induced Chemically Patchy Uniaxial Nanoparticles and Their Applications in Anti-Counterfeiting and Self-Assembled Superstructures.
Anisotropy
Anti-Counterfeiting
Liquid Crystals
Patchy Nanoparticles
Self-Assembly
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
11 Apr 2023
11 Apr 2023
Historique:
received:
13
12
2022
medline:
17
2
2023
pubmed:
17
2
2023
entrez:
16
2
2023
Statut:
ppublish
Résumé
We report an unusual strategy for synthesizing patchy nanoparticles (NPs) by controlling the orientation of the molecules that form the NPs. This is realized by synchronous polymerization and crystallization of liquid crystal (LC) monomers during scalable precipitation polymerization. The resulting NPs are cylinders with highly uniform shapes and have only a single LC domain. The patchy properties originate from the discrepancy of surface chemical compositions on flat and side surfaces and can be switched on and off by solvent. Extra colloidal blocks can be grown onto the patches, resulting in highly uniform triblock patchy dumbbells, which have integrated optical properties, and as demonstrated, show triple-mode optical authentication in anti-counterfeiting labels or patterns. We also demonstrate that the triblock patchy cylinders are attractive building blocks for long LC rods or porous colloidal materials through polymerization-induced self-assembly.
Identifiants
pubmed: 36797514
doi: 10.1002/anie.202218399
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202218399Subventions
Organisme : Ministry of Science and Technology of the People´s Republic of China
ID : 2021YFA0716700
Organisme : National Natural Science Foundation of China
ID : 22172175
Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
A. Walther, A. H. Muller, Chem. Rev. 2013, 113, 5194-5261;
J. Hu, S. Zhou, Y. Sun, X. Fang, L. Wu, Chem. Soc. Rev. 2012, 41, 4356-4378;
A. Kirillova, C. Marschelke, A. Synytska, ACS Appl. Mater. Interfaces 2019, 11, 9643-9671;
J. Du, R. K. O′Reilly, Chem. Soc. Rev. 2011, 40, 2402-2416;
X. Zhang, Z. W. Li, Y. Wu, X. Ge, L. Su, H. Feng, Z. Wu, H. Yang, J. Song, Angew. Chem. Int. Ed. 2021, 60, 17647-17653;
Angew. Chem. 2021, 133, 17788-17794;
Z. Yang, J. Wei, Y. I. Sobolev, B. A. Grzybowski, Nature 2018, 553, 313-318;
H. C. Yang, J. Hou, V. Chen, Z. K. Xu, Angew. Chem. Int. Ed. 2016, 55, 13398-13407;
Angew. Chem. 2016, 128, 13596-13605;
M. Xuan, Z. Wu, J. Shao, L. Dai, T. Si, Q. He, J. Am. Chem. Soc. 2016, 138, 6492-6497;
W. Qin, T. Peng, Y. Gao, F. Wang, X. Hu, K. Wang, J. Shi, D. Li, J. Ren, C. Fan, Angew. Chem. Int. Ed. 2017, 56, 515-518;
Angew. Chem. 2017, 129, 530-533;
F. Tu, D. Lee, J. Am. Chem. Soc. 2014, 136, 9999-10006;
S. N. Yin, C. F. Wang, Z. Y. Yu, J. Wang, S. S. Liu, S. Chen, Adv. Mater. 2011, 23, 2915-2919.
Q. Chen, S. C. Bae, S. Granick, Nature 2011, 469, 381-384;
D. Morphew, J. Shaw, C. Avins, D. Chakrabarti, ACS Nano 2018, 12, 2355-2364;
H. Eslami, K. Bahri, F. Müller-Plathe, J. Phys. Chem. C 2018, 122, 9235-9244;
J. Yan, S. C. Bae, S. Granick, Adv. Mater. 2015, 27, 874-879;
W. F. Reinhart, A. Z. Panagiotopoulos, J. Chem. Phys. 2016, 145, 094505;
J. M. Dempster, M. Olvera de la Cruz, ACS Nano 2016, 10, 5909-5915;
L. Abelmann, T. A. G. Hageman, P. A. Lothman, M. Mastrangeli, M. C. Elwenspoek, Sci. Adv. 2020, 6, eaba2007.
R. M. Choueiri, E. Galati, H. Therien-Aubin, A. Klinkova, E. M. Larin, A. Querejeta-Fernandez, L. Han, H. L. Xin, O. Gang, E. B. Zhulina, M. Rubinstein, E. Kumacheva, Nature 2016, 538, 79-83;
Z. Luo, J. Zhou, B. Liu, Angew. Chem. Int. Ed. 2019, 58, 16884-16888;
Angew. Chem. 2019, 131, 17040-17044;
Z. Gong, T. Hueckel, G. R. Yi, S. Sacanna, Nature 2017, 550, 234-238;
B. Y. Guan, L. Yu, X. W. Lou, J. Am. Chem. Soc. 2016, 138, 11306-11311.
Q. Chen, E. Diesel, J. K. Whitmer, S. C. Bae, E. Luijten, S. Granick, J. Am. Chem. Soc. 2011, 133, 7725-7727;
S. Aizawa, K. Seto, E. Tokunaga, Langmuir 2017, 33, 14684-14690;
J. L. Lawson, N. J. Jenness, R. L. Clark, Part. Part. Syst. Charact. 2015, 32, 734-742.
J. B. Fan, H. Liu, Y. Y. Song, Z. Luo, Z. Y. Lu, S. T. Wang, Macromolecules 2018, 51, 1591-1597;
J. Zhang, B. A. Grzybowski, S. Granick, Langmuir 2017, 33, 6964-6977;
B. Liu, W. Wei, X. Qu, Z. Yang, Angew. Chem. Int. Ed. 2008, 47, 3973-3975;
Angew. Chem. 2008, 120, 4037-4039.
F. Wurm, A. F. Kilbinger, Angew. Chem. Int. Ed. 2009, 48, 8412-8421;
Angew. Chem. 2009, 121, 8564-8574;
M. Urban, B. Freisinger, O. Ghazy, R. Staff, K. Landfester, D. Crespy, A. Musyanovych, Macromolecules 2014, 47, 7194-7199;
T. Hessberger, L. B. Braun, R. Zentel, Adv. Funct. Mater. 2018, 28, 1800629;
X. Fan, J. Yang, X. J. Loh, Z. Li, Macromol. Rapid Commun. 2019, 40, 1800203;
Q. Yang, K. Loos, Polym. Chem. 2017, 8, 641-654;
H. Wang, Z. Fu, X. Zhao, Y. Li, J. Li, ACS Appl. Mater. Interfaces 2017, 9, 14358-14370.
J. Qiu, Z. Chen, M. Chi, Y. Xia, Angew. Chem. Int. Ed. 2021, 60, 12980-12984;
Angew. Chem. 2021, 133, 13090-13094;
B. Liu, J. Liu, F. Liang, Q. Wang, C. Zhang, X. Qu, J. Li, D. Qiu, Z. Yang, Macromolecules 2012, 45, 5176-5184.
A. H. Gröschel, A. Walther, T. I. Lobling, F. H. Schacher, H. Schmalz, A. H. Muller, Nature 2013, 503, 247-251;
R. Deng, H. Li, J. Zhu, B. Li, F. Liang, F. Jia, X. Qu, Z. Yang, Macromolecules 2016, 49, 1362-1368;
R. Deng, F. Liang, X. Qu, Q. Wang, J. Zhu, Z. Yang, Macromolecules 2015, 48, 750-755;
X. Qiang, S. Franzka, G. Quintieri, X. Dai, C. K. Wong, A. H. Groschel, Angew. Chem. Int. Ed. 2021, 60, 21668-21672;
Angew. Chem. 2021, 133, 21836-21840;
X. Qiang, A. Steinhaus, C. Chen, R. Chakroun, A. H. Groschel, Angew. Chem. Int. Ed. 2019, 58, 7122-7126;
Angew. Chem. 2019, 131, 7196-7200.
K. K. Caswell, J. N. Wilson, U. H. Bunz, C. J. Murphy, J. Am. Chem. Soc. 2003, 125, 13914-13915;
Z. Nie, D. Fava, E. Kumacheva, S. Zou, G. C. Walker, M. Rubinstein, Nat. Mater. 2007, 6, 609-614.
L. González-Urbina, K. Baert, B. Kolaric, J. Perez-Moreno, K. Clays, Chem. Rev. 2012, 112, 2268-2285;
G. von Freymann, V. Kitaev, B. V. Lotsch, G. A. Ozin, Chem. Soc. Rev. 2013, 42, 2528-2554.
W. Y. Chen, C. Y. Li, J. X. Zheng, P. Huang, L. Zhu, Q. Ge, R. P. Quirk, B. Lotz, L. Deng, C. Wu, E. L. Thomas, S. Z. D. Cheng, Macromolecules 2004, 37, 5292-5299;
C. Jiang, Z. Wang, H. Huang, T. He, Langmuir 2011, 27, 4351-4357.
E. J. Cornel, J. Jiang, S. Chen, J. Du, CCS Chem. 2021, 3, 2104-2125;
F. D′Agosto, J. Rieger, M. Lansalot, Angew. Chem. Int. Ed. 2020, 59, 8368-8392;
Angew. Chem. 2020, 132, 8444-8470.
J. C. Foster, S. Varlas, B. Couturaud, Z. Coe, R. K. O′Reilly, J. Am. Chem. Soc. 2019, 141, 2742-2753.
J. D. Ruiz Perez, S. Mecking, Angew. Chem. Int. Ed. 2017, 56, 6147-6151;
Angew. Chem. 2017, 129, 6243-6247.
J. D. Forster, J.-G. Park, M. Mittal, H. Noh, C. F. Schreck, C. S. O'Hern, H. Cao, E. M. Furst, E. R. Dufresne, ACS Nano 2011, 5, 6695-6700;
J. G. Park, J. D. Forster, E. R. Dufresne, J. Am. Chem. Soc. 2010, 132, 5960-5961.
C. Yu, J. Zhang, S. Granick, Angew. Chem. Int. Ed. 2014, 53, 4364-4367;
Angew. Chem. 2014, 126, 4453-4456;
B. Bharti, D. Rutkowski, K. Han, A. U. Kumar, C. K. Hall, O. D. Velev, J. Am. Chem. Soc. 2016, 138, 14948-14953;
B. Haney, J. G. Werner, D. A. Weitz, S. Ramakrishnan, Soft Matter 2020, 16, 3613-3620.
J. Nai, S. Wang, X. W. D. Lou, Sci. Adv. 2019, 5, eaax5095;
J. Nai, B. Y. Guan, L. Yu, X. W. D. Lou, Sci. Adv. 2017, 3, e1700732;
Q. Liu, Z. Sun, Y. Dou, J. H. Kim, S. X. Dou, J. Mater. Chem. A 2015, 3, 11688-11699;
Y. Katayama, M. Kalaj, K. S. Barcus, S. M. Cohen, J. Am. Chem. Soc. 2019, 141, 20000-20003.