N-thiocarboxyanhydrides, amino acid-derived enzyme-activated H
Bioenergetics
Gasotransmitters
H2S-releasing agents
Reproductive biotechnologies
Sperm lifespan
Journal
BMC veterinary research
ISSN: 1746-6148
Titre abrégé: BMC Vet Res
Pays: England
ID NLM: 101249759
Informations de publication
Date de publication:
16 Feb 2023
16 Feb 2023
Historique:
received:
15
11
2022
accepted:
27
01
2023
entrez:
16
2
2023
pubmed:
17
2
2023
medline:
22
2
2023
Statut:
epublish
Résumé
Hydrogen sulfide (H Our results show that carbonic anhydrase is found both in spermatozoa and seminal plasma, with activity notably higher in the latter. Both Gly- and Leu-NTAs did not exert any noxious effects, but they enhanced sperm mitochondrial activity in the presence and absence of oxidative stress. Moreover, NTAs (except for Leu-NTA 10 nM) tended to preserve the sperm redox balance against the injuries provoked by oxidative stress, which provide further support to the antioxidant effect of H The presence of carbonic anhydrase activity in mammalian spermatozoa makes NTAs promising molecules to investigate the role of H
Sections du résumé
BACKGROUND
BACKGROUND
Hydrogen sulfide (H
RESULTS
RESULTS
Our results show that carbonic anhydrase is found both in spermatozoa and seminal plasma, with activity notably higher in the latter. Both Gly- and Leu-NTAs did not exert any noxious effects, but they enhanced sperm mitochondrial activity in the presence and absence of oxidative stress. Moreover, NTAs (except for Leu-NTA 10 nM) tended to preserve the sperm redox balance against the injuries provoked by oxidative stress, which provide further support to the antioxidant effect of H
CONCLUSIONS
CONCLUSIONS
The presence of carbonic anhydrase activity in mammalian spermatozoa makes NTAs promising molecules to investigate the role of H
Identifiants
pubmed: 36797726
doi: 10.1186/s12917-023-03593-5
pii: 10.1186/s12917-023-03593-5
pmc: PMC9933379
doi:
Substances chimiques
Amino Acids
0
Reactive Oxygen Species
0
Carbonic Anhydrases
EC 4.2.1.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
52Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM123508
Pays : United States
Commentaires et corrections
Type : ErratumIn
Type : ErratumIn
Informations de copyright
© 2023. The Author(s).
Références
Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92:791–896. https://doi.org/10.1152/physrev.00017.2011 .
doi: 10.1152/physrev.00017.2011
pubmed: 22535897
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol. Rev. 2023;103:31–276. https://doi.org/10.1152/physrev.00028.2021 .
Otasevic V, Stancic A, Korac A, Jankovic A, Korac B. Reactive oxygen, nitrogen, and sulfur species in human male fertility. A crossroad of cellular signaling and pathology. BioFactors. 2020;46:206–19. https://doi.org/10.1002/biof.1535 .
doi: 10.1002/biof.1535
pubmed: 31185138
Kadlec M, Ros-Santaella JL, Pintus E. The roles of NO and H
doi: 10.3390/ijms21062174
pubmed: 32245265
pmcid: 7139502
Wang J, Wang W, Li S, Han Y, Zhang P, Meng G, et al. Hydrogen sulfide as a potential target in preventing spermatogenic failure and testicular dysfunction. Antioxid Redox Signal. 2018;28:1447–62. https://doi.org/10.1089/ars.2016.6968 .
doi: 10.1089/ars.2016.6968
Pintus E, Jovičić M, Kadlec M, Ros-Santaella JL. Divergent effect of fast- and slow-releasing H
doi: 10.1038/s41598-020-63489-4
pubmed: 32300246
pmcid: 7162918
Kadlec M, Pintus E, Ros-Santaella JL. The Interaction of NO and H
doi: 10.3390/ani12050602
pubmed: 35268171
pmcid: 8909797
Evans EPP, Scholten JTM, Mzyk A, Reyes-San-Martin C, Llumbet AE, Hamoh T, et al. Male subfertility and oxidative stress. Redox Biol. 2021;46:102071. https://doi.org/10.1016/j.redox.2021.102071 .
doi: 10.1016/j.redox.2021.102071
pubmed: 34340027
pmcid: 8342954
Pintus E, Ros-Santaella JL. Impact of oxidative stress on male reproduction in domestic and wild animals. Antioxidants. 2021;10:1154. https://doi.org/10.3390/antiox10071154 .
doi: 10.3390/antiox10071154
pubmed: 34356386
pmcid: 8301082
Powell CR, Dillon KM, Matson JB. A review of hydrogen sulfide (H
doi: 10.1016/j.bcp.2017.11.014
pubmed: 29175421
Levinn CM, Cerda MM, Pluth MD. Activatable Small-Molecule H
Magli E, Perissutti E, Santagada V, Caliendo G, Corvino A, Esposito G, et al. H
doi: 10.3390/biom11121899
pubmed: 34944543
pmcid: 8699746
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, et al. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med. Res. Rev. 2022;42:1–48. https://doi.org/10.1002/med.21913
Rose P, Dymock BW, Moore PK. “GYY4137, a novel water-soluble, H
Powell CR, Foster JC, Okyere B, Theus MH, Matson JB. Therapeutic delivery of H
doi: 10.1021/jacs.6b07204
pubmed: 27715026
pmcid: 5074078
Powell CR, Kaur K, Dillon KM, Zhou M, Alaboalirat M, Matson JB. Functional N-Substituted N-Thiocarboxyanhydrides as Modular Tools for Constructing H
Kaur K, Enders P, Zhu Y, Bratton AF, Powell CR, Kashfi K, et al. Amino acid-based H
Steiger AK, Zhao Y, Pluth MD. Emerging roles of carbonyl sulfide in chemical biology: sulfide transporter or gasotransmitter? Antioxid Redox Signal. 2018;2018(28):1516–32. https://doi.org/10.1089/ars.2017.7119 .
doi: 10.1089/ars.2017.7119
Zhao Y, et al. Hydrogen sulfide and/or ammonia reduces spermatozoa motility through AMPK/AKT related pathways. Sci Rep. 2016;6:37884. https://doi.org/10.1038/srep37884 .
doi: 10.1038/srep37884
pubmed: 27883089
pmcid: 5121643
Řimnáčová H, Moravec J, Štiavnická M, Havránková J, Hošek P, Prokešová Š, et al. Evidence of endogenously produced hydrogen sulfide (H
doi: 10.1038/s41598-022-15360-x
pubmed: 35794129
pmcid: 9259693
Nishita T, Itoh S, Arai S, Ichihara N, Arishima K. Measurement of carbonic anhydrase isozyme VI (CA-VI) in swine sera, colostrums, saliva, bile, seminal plasma and tissues. Anim Sci J. 2011;82:673–8. https://doi.org/10.1111/j.1740-0929.2011.00888.x .
doi: 10.1111/j.1740-0929.2011.00888.x
pubmed: 21951903
Zigo M, Kerns K, Sen S, Essien C, Oko R, Xu D, et al. Zinc is a master-regulator of sperm function associated with binding, motility, and metabolic modulation during porcine sperm capacitation. Commun Biol. 2022;5:1–12. https://doi.org/10.1038/s42003-022-03485-8 .
doi: 10.1038/s42003-022-03485-8
José O, Torres-Rodríguez P, Forero-Quintero LS, Chávez JC, De La Vega-Beltrán JL, Carta F, et al. Carbonic anhydrases and their functional differences in human and mouse sperm physiology. Biochem Biophys Res Commun. 2015;468:713–8. https://doi.org/10.1016/j.bbrc.2015.11.021 .
doi: 10.1016/j.bbrc.2015.11.021
pubmed: 26551457
Wandernoth PM, Mannowetz N, Szczyrba J, Grannemann L, Wolf A, Becker HM, et al. Normal fertility requires the expression of carbonic anhydrases II and IV in sperm. J Biol Chem. 2015;290:29202–16. https://doi.org/10.1074/jbc.M115.698597 .
doi: 10.1074/jbc.M115.698597
pubmed: 26487715
pmcid: 4705926
Studer SM, Orens JB, Rosas I, Krishnan JA, Cope KA, Yang S, et al. Patterns and significance of exhaled-breath biomarkers in lung transplant recipients with acute allograft rejection. J Heart Lung Transpl. 2001;20:1158–66. https://doi.org/10.1016/S1053-2498(01)00343-6 .
doi: 10.1016/S1053-2498(01)00343-6
Balazy M, Abu-Yousef IA, Harpp DN, Park J. Identification of carbonyl sulfide and sulfur dioxide in porcine coronary artery by gas chromatography/mass spectrometry, possible relevance to EDHF. Biochem Biophys Res Commun. 2003;311:728–34. https://doi.org/10.1016/j.bbrc.2003.10.055 .
doi: 10.1016/j.bbrc.2003.10.055
pubmed: 14623333
Steiger AK, Marcatti M, Szabo C, Szczesny B, Pluth MD. Inhibition of Mitochondrial Bioenergetics by Esterase-Triggered COS/H
doi: 10.1021/acschembio.7b00279
pubmed: 28613823
pmcid: 6022832
Módis K, Bos EM, Calzia E, van Goor H, Coletta C, Papapetropoulos A, et al. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. Br J Pharmacol. 2014;171:2123–46. https://doi.org/10.1111/bph.12368 .
Szabo C, Murghes B, Andriamihaja M, Bouillaud F, Módis K, Olah G, et al. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol. 2014;171:2099–122. https://doi.org/10.1111/bph.12369 .
doi: 10.1111/bph.12369
pubmed: 23991830
pmcid: 3976625
Borisov VB, Forte E. Impact of hydrogen sulfide on mitochondrial and bacterial bioenergetics. Int J Mol Sci. 2021;22:12688. https://doi.org/10.3390/ijms222312688 .
Storey BT. Mammalian sperm metabolism: oxygen and sugar, friend and foe. Int J Dev Biol. 2008;52:427–37. https://doi.org/10.1387/ijdb.072522bs .
doi: 10.1387/ijdb.072522bs
pubmed: 18649255
du Plessis SS, Agarwal A, Mohanty G, van der Linde M. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use? Asian J Androl. 2015;17:230–5. https://doi.org/10.4103/1008-682X.135123 .
doi: 10.4103/1008-682X.135123
pubmed: 25475660
Amaral A. Energy metabolism in mammalian sperm motility. WIREs Mech. Dis. 2022;114:e1569. https://doi.org/10.1002/wsbm.1569 .
Rodríguez-Gil JE, Bonet S. Current knowledge on boar sperm metabolism: Comparison with other mammalian species. Theriogenology. 2016;85:4–11. https://doi.org/10.1016/j.theriogenology.2015.05.005 .
doi: 10.1016/j.theriogenology.2015.05.005
pubmed: 26094247
Nesci S, Spinaci M, Galeati G, Nerozzi C, Pagliarani A, Algieri C, et al. Sperm function and mitochondrial activity: An insight on boar sperm metabolism. Theriogenology. 2020;144:82–8. https://doi.org/10.1016/j.theriogenology.2020.01.004 .
doi: 10.1016/j.theriogenology.2020.01.004
pubmed: 31927418
Moraes CR, Meyers S. The sperm mitochondrion: Organelle of many functions. Anim Reprod Sci. 2018;194:71–80. https://doi.org/10.1016/j.anireprosci.2018.03.024 .
doi: 10.1016/j.anireprosci.2018.03.024
pubmed: 29605167
Durairajanayagam D, Singh D, Agarwal A, Henkel R. Causes and consequences of sperm mitochondrial dysfunction. Andrologia. 2021;53:e13666. https://doi.org/10.1111/and.13666 .
doi: 10.1111/and.13666
pubmed: 32510691
Guthrie HD, Welch GR, Long JA. Mitochondrial function and reactive oxygen species action in relation to boar motility. Theriogenology. 2008;70:1209–15. https://doi.org/10.1016/j.theriogenology.2008.06.017 .
doi: 10.1016/j.theriogenology.2008.06.017
pubmed: 18667230
Jang HY, Kim YH, Kim BW, Park IC, Cheong HT, Kim JT, et al. Ameliorative effects of melatonin against hydrogen peroxide-induced oxidative stress on boar sperm characteristics and subsequent in vitro embryo development. Reprod Domest Anim. 2010;45:943–50. https://doi.org/10.1111/j.1439-0531.2009.01466.x .
doi: 10.1111/j.1439-0531.2009.01466.x
pubmed: 19473309
Fukuzawa K, Saitoh Y, Akai K, Kogure K, Ueno S, Tokumura A, et al. Antioxidant effect of bovine serum albumin on membrane lipid peroxidation induced by iron chelate and superoxide. Biochim Biophys Acta. 2005;1668:145–55. https://doi.org/10.1016/j.bbamem.2004.12.006 .
doi: 10.1016/j.bbamem.2004.12.006
pubmed: 15670740
Panner Selvam MK, Agarwal A, Henkel R, Finelli R, Robert KA, Iovine C, et al. The effect of oxidative and reductive stress on semen parameters and functions of physiologically normal human spermatozoa. Free Radic Biol Med. 2020;152:375–85. https://doi.org/10.1016/j.freeradbiomed.2020.03.008 .
doi: 10.1016/j.freeradbiomed.2020.03.008
pubmed: 32165282
Agarwal A, Henkel R, Sharma R, Tadros NN, Sabanegh E. Determination of seminal oxidation–reduction potential (ORP) as an easy and cost-effective clinical marker of male infertility. Andrologia. 2018;50:e12914. https://doi.org/10.1111/and.12914 .
doi: 10.1111/and.12914
Arafa M, Henkel R, Agarwal A, Majzoub A, Elbardisi H. Correlation of oxidation–reduction potential with hormones, semen parameters and testicular volume. Andrologia. 2019;51:1–7. https://doi.org/10.1111/and.13258 .
doi: 10.1111/and.13258
Panner Selvam MK, Finelli R, Agarwal A, Henkel R. Evaluation of seminal oxidation–reduction potential in male infertility. Andrologia. 2021;53:e13610. https://doi.org/10.1111/and.13610 .
doi: 10.1111/and.13610
pubmed: 32399973
Agarwal A, Roychoudhury S, Bjugstad KB, Cho CL. Oxidation-reduction potential of semen: What is its role in the treatment of male infertility? Ther Adv Urol. 2016;8:302–18. https://doi.org/10.1177/1756287216652779 .
doi: 10.1177/1756287216652779
pubmed: 27695529
pmcid: 5004233
Kimura Y, Goto Y-I, Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid Redox Signal. 2010;12:1–13. https://doi.org/10.1089/ars.2008.2282 .
doi: 10.1089/ars.2008.2282
pubmed: 19852698
Szczesny B, Módis K, Yanagi K, Coletta C, Le Trionnaire S, Perry A, et al. AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide. 2014;41:120–30. https://doi.org/10.1016/j.niox.2014.04.008 .
doi: 10.1016/j.niox.2014.04.008
pubmed: 24755204
pmcid: 4225488
Wang Y, Shi S, Dong S, Wu J, Song M, Zhong X, et al. Sodium hydrosulfide attenuates hyperhomocysteinemia rat myocardial injury through cardiac mitochondrial protection. Mol Cell Biochem. 2015;399:189–200. https://doi.org/10.1007/s11010-014-2245-6 .
doi: 10.1007/s11010-014-2245-6
pubmed: 25376739
Chauhan P, Gupta K, Ravikumar G, Saini DK, Chakrapani H. Carbonyl Sulfide (COS) Donor Induced Protein Persulfidation Protects against Oxidative Stress. Chem Asian J. 2019;14:4717–24. https://doi.org/10.1002/asia.201901148 .
doi: 10.1002/asia.201901148
pubmed: 31502759
Kimura H. Signalling by hydrogen sulfide and polysulfides via protein S-sulfuration. Br J Pharmacol. 2020;177:720–33. https://doi.org/10.1111/bph.14579 .
Peng B, Chen W, Liu C, Rosser EW, Pacheco A, Zhao Y, et al. Fluorescent probes based on nucleophilic substitution-cyclization for hydrogen sulfide detection and bioimaging. Chemistry. 2014;20:1010–6. https://doi.org/10.1002/chem.201303757 .
doi: 10.1002/chem.201303757
pubmed: 24339269
Pursel VG, Johnson LA. Freezing of boar spermatozoa: fertilizing capacity with concentrated semen and a new thawing procedure. J Anim Sci. 1975;40:99–102.
doi: 10.2527/jas1975.40199x
pubmed: 1110222
Waberski D, Luther AM, Grünther B, Jäkel H, Henning H, Vogel C, et al. Sperm function in vitro and fertility after antibiotic-free, hypothermic storage of liquid preserved boar semen. Sci Rep. 2019;9:14748. https://doi.org/10.1038/s41598-019-51319-1 .
doi: 10.1038/s41598-019-51319-1
pubmed: 31611589
pmcid: 6791940
Thurman AC, Davis JL, Jan M, McCulloch CE, Buelow BD. Development and validation of an app-based cell counter for use in the clinical laboratory setting. J Pathol Inform. 2015;6:2. https://doi.org/10.4103/2153-3539.150252 .
doi: 10.4103/2153-3539.150252
pubmed: 25722942
pmcid: 4338481
Agarwal A, Gupta S, Sharma R. “Oxidation-Reduction Potential Measurement in Ejaculated Semen Samples” in Andrological Evaluation of Male Infertility, eds. Agarwal A et al.. Publishing Switzerland: Springer International; 2016.