Establishing the accuracy of position-specific carbon isotope analysis of propane by GC-pyrolysis-GC-IRMS.


Journal

Rapid communications in mass spectrometry : RCM
ISSN: 1097-0231
Titre abrégé: Rapid Commun Mass Spectrom
Pays: England
ID NLM: 8802365

Informations de publication

Date de publication:
15 May 2023
Historique:
revised: 14 02 2023
received: 04 12 2022
accepted: 14 02 2023
medline: 18 2 2023
pubmed: 18 2 2023
entrez: 17 2 2023
Statut: ppublish

Résumé

Position-specific (PS) δ We measured the PS δ The results show that large carbon isotope fractionations occurred for both terminal and central carbons within propane during pyrolysis. The isotope fractionations during the pyrolysis are reproducible at optimum conditions, but vary between the two GC-Py-GC-IRMS systems tested, affected by experimental conditions (e.g., pyrolysis temperature, flow rate, and reactor conditions). It is necessary to evaluate and calibrate each GC-Py-GC-IRMS system using propane gases with accurately determined PS δ

Identifiants

pubmed: 36797978
doi: 10.1002/rcm.9494
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e9494

Subventions

Organisme : Chinese Academy of Sciences
ID : the hundreds of talents" program
Organisme : National Natural Science Foundation of China
ID : 42102202
Organisme : National Natural Science Foundation of China
ID : 42203019
Organisme : U.S. Department of Energy (Office of Science, Office of Basic Energy Sciences and Energy Efficiency and Renewable Energy, Solar Energy Technology Program)
ID : DE-SC0016271

Informations de copyright

© 2023 John Wiley & Sons Ltd.

Références

Abelson PH, Hoering TC. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc Natl Acad Sci USA. 1961;47(5):623-632. doi:10.1073/pnas.47.5.623
Martin G, Martin M. The site-specific natural isotope fractionation-NMR method applied to the study of wines. Wine Analysis Springer. 1988;258-275. doi:10.1007/978-3-642-83340-3_9
Yoshida N, Toyoda S. Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers. Nature. 2000;405(6784):330-334. doi:10.1038/35012558
Gilbert A, Lollar BS, Musat F, et al. Intramolecular isotopic evidence for bacterial oxidation of propane in subsurface natural gas reservoirs. Proc Natl Acad Sci. 2019;116(14):6653-6658. doi:10.1073/pnas.1817784116
Jamin E, Martin G. SNIF-NMR-Part 4: Applications in an Economic Context: The Example of Wines, Spirits, and Juices. In: Webb G, ed. Modern Magnetic Resonance. Netherlands: Springer; 2006:1681-1687. 10.1007/1-4020-3910-7_188
Silvestre V, Mboula VM, Jouitteau C, Akoka S, Robins RJ, Remaud GS. Isotopic C-13 NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: Site-specific C-13 content of aspirin and paracetamol. J Pharm Biomed Anal. 2009;50(3):336-341. doi:10.1016/j.jpba.2009.04.030
Liu C, Liu P, McGovern GP, Horita J. Molecular and intramolecular isotope geochemistry of natural gases from the Woodford shale, Arkoma Basin, Oklahoma. Geochim Cosmochim Acta. 2019;255:188-204. doi:10.1016/j.gca.2019.04.020
Piasecki A, Sessions A, Lawson M, et al. Position-specific 13C distributions within propane from experiments and natural gas samples. Geochim Cosmochim Acta. 2018;220:110-124. doi:10.1016/j.gca.2017.09.042
Suda K, Gilbert A, Yamada K, Yoshida N, Ueno Y. Compound- and position-specific carbon isotopic signatures of abiogenic hydrocarbons from on-land serpentinite-hosted Hakuba Happo hot spring in Japan. Geochim Cosmochim Acta. 2017;206:201-215. doi:10.1016/j.gca.2017.03.008
Zhang L, Li Y, Jiang W, Xiong Y. Position-specific carbon isotopic composition of thermogenic propane: Insights from pyrolysis experiments. Org Geochem. 2022;166:104379. doi:10.1016/j.orggeochem.2022.104379
Gilbert A, Yamada K, Suda K, Ueno Y, Yoshida N. Measurement of position-specific 13C isotopic composition of propane at the nanomole level. Geochim Cosmochim Acta. 2016;177:205-216. doi:10.1016/j.gca.2016.01.017
Liu C, McGovern GP, Liu P, Zhao H, Horita J. Position-specific carbon and hydrogen isotopic compositions of propane from natural gases with quantitative NMR. Chem Geol. 2018;491:14-26. doi:10.1016/j.chemgeo.2018.05.011
Piasecki A, Sessions A, Lawson M, Ferreira A, Neto ES, Eiler JM. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer. Geochim Cosmochim Acta. 2016;188:58-72. doi:10.1016/j.gca.2016.04.048
Xie H, Ponton C, Formolo MJ, et al. Position-specific hydrogen isotope equilibrium in propane. Geochim Cosmochim Acta. 2018;238:193-207. doi:10.1016/j.gca.2018.06.025
Gao L, He P, Jin Y, et al. Determination of position-specific carbon isotope ratios in propane from hydrocarbon gas mixtures. Chem Geol. 2016;435:1-9. doi:10.1016/j.chemgeo.2016.04.019
Akoka S, Remaud GS. NMR-based isotopic and isotopomic analysis. Prog Nucl Magn Reson Spectrosc. 2020;120:1-24. doi:10.1016/j.pnmrs.2020.07.001
Gilbert A, Hattori R, Silvestre V, et al. Comparison of IRMS and NMR spectrometry for the determination of intramolecular C-13 isotope composition: Application to ethanol. Talanta. 2012;99:1035-1039. doi:10.1016/j.talanta.2012.05.023
Gauchotte C, O'Sullivan G, Davis S, Kalin RM. Development of an advanced on-line position-specific stable carbon isotope system and application to methyl tert-butyl ether. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of up-to-the-Minute Research in Mass Spectrometry. 2009;23(19):3183-3193. doi:10.1002/rcm.4222
Julien M, Goldman MJ, Liu C, et al. Intramolecular 13C isotope distributions of butane from natural gases. Chem Geol. 2020;541:119571. doi:10.1016/j.chemgeo.2020.119571
Yamada K, Tanaka M, Nakagawa F, Yoshida N. On-line measurement of intramolecular carbon isotope distribution of acetic acid by continuous-flow isotope ratio mass spectrometry. Rapid Commun Mass Spectrom. 2002;16(11):1059-1064. doi:10.1002/rcm.678
Zhao H, Liu C, Larson TE, McGovern GP, Horita J. Bulk and position-specific isotope geochemistry of natural gases from the late cretaceous eagle ford shale, South Texas. Marine and Petroleum Geology. 2020;122:104659. doi:10.1016/j.marpetgeo.2020.104659
Bayle K, Gilbert A, Julien M, et al. Conditions to obtain precise and true measurements of the intramolecular 13C distribution in organic molecules by isotopic 13C nuclear magnetic resonance spectrometry. Anal Chim Acta. 2014;846:1-7. doi:10.1016/j.aca.2014.07.018
Chaintreau A, Fieber W, Sommer H, et al. Site-specific 13C content by quantitative isotopic 13C nuclear magnetic resonance spectrometry: A pilot inter-laboratory study. Anal Chim Acta. 2013;788:108-113. doi:10.1016/j.aca.2013.06.004
Li X, Horita J. Kinetic and equilibrium reactions on natural and laboratory generation of thermogenic gases from type II marine shale. Geochim Cosmochim Acta. 2022;333:263-283. doi:10.1016/j.gca.2022.07.020
Li Y, Zhang L, Xiong Y, Gao S, Yu Z, Peng, P.a. Determination of position-specific carbon isotope ratios of propane from natural gas. Org Geochem. 2018;119:11-21. doi:10.1016/j.orggeochem.2018.02.007
Ma Y, Tao C, Ba L, et al. Measurements of position-specific carbon isotopic compositions in propane by on-line gas chromatography-pyrolysis-gas-chromatography-isotope ratio mass spectrometer (GC-py-GC-IRMS) and its preliminary application. Petroleum Geology & Experiment. 2022;44:350-356.
Li X, McGovern GP, Horita J. Kinetics of propane cracking and position-specific isotope fractionation: Insights into the origins of natural gases. Org Geochem. 2021;155:104234. doi:10.1016/j.orggeochem.2021.104234

Auteurs

Changjie Liu (C)

Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences; Key Laboratory of Petroleum Resources, Gansu Province, Lanzhou, China.

Peng Liu (P)

College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, China.

Xiaofeng Wang (X)

Department of Geology, Northwest University, Xi'an, China.

Xiaoqiang Li (X)

Department of Geosciences, Texas Tech University, Lubbock, TX, USA.

Juske Horita (J)

Department of Geosciences, Texas Tech University, Lubbock, TX, USA.

Classifications MeSH