Human Cytomegalovirus UL138 Interaction with USP1 Activates STAT1 in infection.


Journal

bioRxiv : the preprint server for biology
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187

Informations de publication

Date de publication:
07 Feb 2023
Historique:
entrez: 17 2 2023
pubmed: 18 2 2023
medline: 18 2 2023
Statut: epublish

Résumé

Innate immune responses are crucial for limiting virus infection. However, viruses often hijack our best defenses for viral objectives. Human Cytomegalovirus (HCMV) is a beta herpesvirus which establishes a life-long latent infection. Defining the virus-host interactions controlling latency and reactivation is vital to the control of viral disease risk posed by virus reactivation. We defined an interaction between UL138, a pro-latency HCMV gene, and the host deubiquintase complex, UAF1-USP1. UAF1 is a scaffold protein pivotal for the activity of ubiquitin specific peptidases (USP), including USP1. UAF1-USP1 sustains an innate immune response through the phosphorylation and activation of signal transducer and activator of transcription-1 (pSTAT1), as well as regulates the DNA damage response. After the onset of viral DNA synthesis, pSTAT1 levels are elevated and this depends upon UL138 and USP1. pSTAT1 localizes to viral centers of replication, binds to the viral genome, and influences UL138 expression. Inhibition of USP1 results in a failure to establish latency, marked by increased viral genome replication and production of viral progeny. Inhibition of Jak-STAT signaling also results in increased viral genome synthesis in hematopoietic cells, consistent with a role for USP1-mediated regulation of STAT1 signaling in the establishment of latency. These findings demonstrate the importance of the UL138-UAF1-USP1 virus-host interaction in regulating HCMV latency establishment through the control of innate immune signaling. It will be important going forward to distinguish roles of UAF1-USP1 in regulating pSTAT1 relative to its role in the DNA damage response in HCMV infection. Human cytomegalovirus (HCMV) is one of nine herpesviruses that infect humans. Following a primary infection, HCMV establishes a life-long latent infection that is marked by sporadic, and likely frequent reactivation events. While these reactivation events are asymptomatic in the immune competent host, they pose important disease risks for the immune compromised, including solid organ or stem cell transplant recipients. Its complex interactions with host biology and deep coding capacity make it an excellent model for defining mechanisms important for viral latency and reactivation. Here we define an interaction with host proteins that commandeer typically antiviral innate immune signaling for the establishment of latency.

Identifiants

pubmed: 36798153
doi: 10.1101/2023.02.07.527452
pmc: PMC9934528
pii:
doi:

Types de publication

Preprint

Langues

eng

Subventions

Organisme : NIAID NIH HHS
ID : R01 AI169728
Pays : United States
Organisme : NIAID NIH HHS
ID : R37 AI079059
Pays : United States

Commentaires et corrections

Type : UpdateIn

Références

Virology. 2020 Jan 15;540:75-87
pubmed: 31743858
PLoS Pathog. 2016 Jul 19;12(7):e1005764
pubmed: 27434509
J Gen Virol. 2008 Jan;89(Pt 1):1-47
pubmed: 18089727
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18448-53
pubmed: 19017798
Oncogene. 2000 May 15;19(21):2612-8
pubmed: 10851060
Cell Rep. 2019 Feb 26;26(9):2394-2406.e5
pubmed: 30811989
J Virol. 2011 Dec;85(24):13260-70
pubmed: 21976655
J Virol. 2018 Sep 26;92(20):
pubmed: 30089695
Sci Adv. 2015 Nov 27;1(10):e1501164
pubmed: 26702450
J Virol. 2011 Jun;85(11):5696-700
pubmed: 21450824
PLoS Pathog. 2019 May 20;15(5):e1007691
pubmed: 31107917
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3840-5
pubmed: 16497831
mBio. 2018 Sep 11;9(5):
pubmed: 30206173
J Virol. 2004 Nov;78(22):12416-27
pubmed: 15507628
J Virol. 2006 Dec;80(23):11686-98
pubmed: 17005669
Science. 2013 Apr 12;340(6129):199-202
pubmed: 23580527
J Virol. 2011 Nov;85(21):11409-21
pubmed: 21880774
J Exp Med. 2017 Dec 4;214(12):3553-3563
pubmed: 29138248
Epigenetics Chromatin. 2019 Jul 12;12(1):42
pubmed: 31300027
PLoS One. 2015 Mar 23;10(3):e0120946
pubmed: 25799165
Annu Rev Virol. 2016 Sep 29;3(1):333-357
pubmed: 27501258
Mol Cell. 2007 Dec 14;28(5):786-97
pubmed: 18082604
J Virol. 2001 Mar;75(6):2929-37
pubmed: 11222718
Virol J. 2006 Jun 09;3:44
pubmed: 16764725
J Virol. 2018 Aug 29;92(18):
pubmed: 29997207
J Virol. 2009 Jun;83(11):5615-29
pubmed: 19297488
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2203203119
pubmed: 35947614
Mol Cell Biol. 2007 Apr;27(8):2910-8
pubmed: 17296724
Leukemia. 2007 Jul;21(7):1363-77
pubmed: 17443228
J Virol. 2010 Aug;84(15):7803-14
pubmed: 20504932
Molecules. 2020 May 28;25(11):
pubmed: 32481657
J Gen Virol. 2008 Feb;89(Pt 2):359-368
pubmed: 18198366
PLoS Pathog. 2019 Nov 14;15(11):e1008037
pubmed: 31725811
mBio. 2021 Dec 21;12(6):e0226721
pubmed: 34903048
Mol Cell Biol. 1997 Oct;17(10):5748-57
pubmed: 9315633
Mol Cell Biol. 1999 Apr;19(4):3216-23
pubmed: 10082588
J Clin Virol. 2009 Dec;46 Suppl 4:S6-10
pubmed: 19800841
Infect Genet Evol. 2018 Oct;64:105-114
pubmed: 29935337
J Exp Med. 1998 Mar 2;187(5):675-83
pubmed: 9480977
J Immunol. 2014 Mar 1;192(5):2143-55
pubmed: 24501199
J Virol. 2016 Sep 29;90(20):9483-94
pubmed: 27512069
J Virol. 2001 Dec;75(24):12393-401
pubmed: 11711629
Nat Rev Mol Cell Biol. 2002 Sep;3(9):651-62
pubmed: 12209125
J Immunol. 1999 May 15;162(10):6107-13
pubmed: 10229853
mBio. 2019 Mar 19;10(2):
pubmed: 30890612
PLoS Pathog. 2020 Jan 3;16(1):e1008215
pubmed: 31899788
J Leukoc Biol. 2022 Nov;112(5):1343-1356
pubmed: 35588262
Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9339-44
pubmed: 10430944
Methods Mol Biol. 2021;2244:83-101
pubmed: 33555583
Mol Cancer Ther. 2013 Dec;12(12):2651-62
pubmed: 24130053
Front Immunol. 2018 May 28;9:1135
pubmed: 29892288
Med Microbiol Immunol. 2019 Aug;208(3-4):263-269
pubmed: 31004198
Elife. 2019 Dec 24;8:
pubmed: 31873071
J Mol Biol. 2013 Dec 13;425(24):4857-71
pubmed: 24013068
J Virol. 2006 Dec;80(23):11817-26
pubmed: 16987971
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6817-E6825
pubmed: 29967140
PLoS Pathog. 2011 Dec;7(12):e1002444
pubmed: 22241980
PLoS Pathog. 2014 Feb 20;10(2):e1003962
pubmed: 24586165
J Virol. 2003 Apr;77(7):4439-43
pubmed: 12634403
J Neurovirol. 2004 Feb;10(1):12-20
pubmed: 14982724
Pathogens. 2022 Dec 17;11(12):
pubmed: 36558888
Nat Rev Microbiol. 2021 Dec;19(12):759-773
pubmed: 34168328
J Virol. 2014 Jun;88(11):5987-6002
pubmed: 24623432
Mol Cell. 2005 Feb 4;17(3):331-9
pubmed: 15694335
Nat Cell Biol. 2006 Apr;8(4):339-47
pubmed: 16531995
Clin Infect Dis. 2005 Jun 1;40(11):1701-2; author reply 1702-3
pubmed: 15889375
Clin Microbiol Rev. 2020 Oct 28;34(1):
pubmed: 33115722
PLoS Pathog. 2019 Feb 28;15(2):e1007442
pubmed: 30818369
Virology. 2016 Oct;497:323-327
pubmed: 27518540
J Virol. 2001 Jan;75(1):341-50
pubmed: 11119603
Mol Cell Biol. 2011 Jun;31(12):2462-9
pubmed: 21482670
Elife. 2020 Jan 22;9:
pubmed: 31967545
Nat Rev Immunol. 2014 Jan;14(1):36-49
pubmed: 24362405
J Virol. 2014 Aug;88(16):9391-405
pubmed: 24920803
Nat Commun. 2020 Mar 2;11(1):1146
pubmed: 32123171
PLoS Pathog. 2011 Apr;7(4):e1002016
pubmed: 21533215
J Gen Virol. 2009 Sep;90(Pt 9):2239-50
pubmed: 19439556
Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):E10586-E10595
pubmed: 29158406
mBio. 2018 Mar 13;9(2):
pubmed: 29535194
Viruses. 2019 Jun 21;11(6):
pubmed: 31234396
Microbes Infect. 2009 Oct;11(12):973-9
pubmed: 19591957
Front Microbiol. 2020 Feb 07;11:124
pubmed: 32117146
J Virol. 2017 Nov 30;91(24):
pubmed: 29021395
Hum Immunol. 2007 Feb;68(2):86-90
pubmed: 17321897
Elife. 2019 Jun 24;8:
pubmed: 31232687
J Biol Chem. 2009 Feb 20;284(8):5343-51
pubmed: 19075014
Sci Transl Med. 2015 Apr 1;7(281):281ra43
pubmed: 25834109
J Virol. 2010 Apr;84(7):3711-7
pubmed: 20071569
Oncogene. 2000 May 15;19(21):2511-22
pubmed: 10851050
PLoS Pathog. 2016 May 24;12(5):e1005655
pubmed: 27218650
Blood. 2007 Aug 1;110(3):937-45
pubmed: 17440050
Aging Cell. 2013 Jun;12(3):381-7
pubmed: 23442093
Oncogene. 2007 Jun 14;26(28):4135-47
pubmed: 17486072
J Virol. 2014 Aug;88(15):8545-55
pubmed: 24850727

Auteurs

Kristen Zarrella (K)

Department of Immunobiology, University of Arizona, Tucson, AZ 85721.

Pierce Longmire (P)

Department of Immunobiology, University of Arizona, Tucson, AZ 85721.

Sebastian Zeltzer (S)

BIO5 Institute, University of Arizona, Tucson, AZ 85721.

Donna Collins-McMillen (D)

BIO5 Institute, University of Arizona, Tucson, AZ 85721.

Meaghan Hancock (M)

Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006.

Jason Buehler (J)

Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006.

Justin M Reitsma (JM)

Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226.
Abbvie, 1 N Waukegan Rd, North Chicago, IL 60064.

Scott S Terhune (SS)

Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226.

Jay A Nelson (JA)

Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006.

Felicia Goodrum (F)

Department of Immunobiology, University of Arizona, Tucson, AZ 85721.
BIO5 Institute, University of Arizona, Tucson, AZ 85721.

Classifications MeSH