First-principles study of sodium adsorption on defective graphene under propylene carbonate electrolyte conditions.
Journal
RSC advances
ISSN: 2046-2069
Titre abrégé: RSC Adv
Pays: England
ID NLM: 101581657
Informations de publication
Date de publication:
14 Feb 2023
14 Feb 2023
Historique:
received:
22
12
2022
accepted:
07
02
2023
entrez:
17
2
2023
pubmed:
18
2
2023
medline:
18
2
2023
Statut:
epublish
Résumé
Hard carbon (HC) has been predominantly used as a typical anode material of sodium-ion batteries (SIBs) but its sodiation mechanism has been debated. In this work, we investigate the adsorption of Na atoms on defective graphene under propylene carbonate (PC) and water solvent as well as vacuum conditions to clarify the sodiation mechanism of HC. Within the joint density functional theory framework, we use the nonlinear polarizable continuum model for PC and the charge-asymmetric nonlocally-determined local electric solvation model for water. Our calculations reveal that the centre of each point defect such as mono-vacancy (MV), di-vacancy (DV) and Stone-Wales is a preferable adsorption site and the electrolyte enhances the Na adsorption through implicit interaction. Furthermore, we calculate the formation energies of multiple Na atom arrangements on the defective graphene and estimate the electrode potential
Identifiants
pubmed: 36798747
doi: 10.1039/d2ra08168g
pii: d2ra08168g
pmc: PMC9926951
doi:
Types de publication
Journal Article
Langues
eng
Pagination
5627-5633Informations de copyright
This journal is © The Royal Society of Chemistry.
Déclaration de conflit d'intérêts
There are no conflicts to declare.
Références
J Phys Chem A. 2014 Feb 27;118(8):1443-50
pubmed: 24499335
Phys Chem Chem Phys. 2014 Aug 7;16(29):15007-28
pubmed: 24894102
J Comput Chem. 2006 Nov 30;27(15):1787-99
pubmed: 16955487
Chem Rev. 2014 Dec 10;114(23):11636-82
pubmed: 25390643
ACS Appl Mater Interfaces. 2017 May 24;9(20):17076-17084
pubmed: 28474877
SoftwareX. 2017;6:278-284
pubmed: 29892692
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
pubmed: 10062328
Nanotechnology. 2022 May 27;33(33):
pubmed: 35487184
Phys Chem Chem Phys. 2019 Sep 21;21(35):19378-19390
pubmed: 31455956
Phys Chem Chem Phys. 2018 May 23;20(20):14124-14132
pubmed: 29748673
Nanotechnol Sci Appl. 2018 Jun 01;11:23-33
pubmed: 29910609
Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10169-73
pubmed: 25056756
ACS Appl Mater Interfaces. 2014 Feb 12;6(3):1788-95
pubmed: 24417606
Acc Chem Res. 2016 Feb 16;49(2):231-40
pubmed: 26783764
Chem Soc Rev. 2017 Jun 19;46(12):3529-3614
pubmed: 28349134
ChemSusChem. 2019 Jan 10;12(1):133-144
pubmed: 30350453
J Chem Phys. 2015 Feb 14;142(6):064107
pubmed: 25681887
Nano Lett. 2015 Sep 9;15(9):5888-92
pubmed: 26241159
Nanoscale. 2019 Nov 28;11(46):22196-22205
pubmed: 31742294
ACS Appl Mater Interfaces. 2015 Mar 11;7(9):5598-604
pubmed: 25692826
ACS Nano. 2011 Jan 25;5(1):26-41
pubmed: 21090760