Integrating comparative modeling and accelerated simulations reveals conformational and energetic basis of actomyosin force generation.
Rosetta comparative modeling
actomyosin
cross-bridge cycling
energy landscape
enhanced sampling simulations
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
28 02 2023
28 02 2023
Historique:
entrez:
21
2
2023
pubmed:
22
2
2023
medline:
25
2
2023
Statut:
ppublish
Résumé
Muscle contraction is performed by arrays of contractile proteins in the sarcomere. Serious heart diseases, such as cardiomyopathy, can often be results of mutations in myosin and actin. Direct characterization of how small changes in the myosin-actin complex impact its force production remains challenging. Molecular dynamics (MD) simulations, although capable of studying protein structure-function relationships, are limited owing to the slow timescale of the myosin cycle as well as a lack of various intermediate structures for the actomyosin complex. Here, employing comparative modeling and enhanced sampling MD simulations, we show how the human cardiac myosin generates force during the mechanochemical cycle. Initial conformational ensembles for different myosin-actin states are learned from multiple structural templates with Rosetta. This enables us to efficiently sample the energy landscape of the system using Gaussian accelerated MD. Key myosin loop residues, whose substitutions are related to cardiomyopathy, are identified to form stable or metastable interactions with the actin surface. We find that the actin-binding cleft closure is allosterically coupled to the myosin motor core transitions and ATP-hydrolysis product release from the active site. Furthermore, a gate between switch I and switch II is suggested to control phosphate release at the prepowerstroke state. Our approach demonstrates the ability to link sequence and structural information to motor functions.
Identifiants
pubmed: 36802417
doi: 10.1073/pnas.2215836120
pmc: PMC9992861
doi:
Substances chimiques
Actomyosin
9013-26-7
Actins
0
Myosins
EC 3.6.4.1
Adenosine Triphosphate
8L70Q75FXE
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2215836120Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM031749
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL128368
Pays : United States
Organisme : NIAMS NIH HHS
ID : P30 AR074990
Pays : United States
Références
Annu Rev Genomics Hum Genet. 2019 Aug 31;20:129-153
pubmed: 30978303
Sci Adv. 2020 Apr 03;6(14):eaax0069
pubmed: 32284968
Elife. 2019 Sep 17;8:
pubmed: 31526481
Annu Rev Biophys. 2010;39:539-57
pubmed: 20192767
J Chem Theory Comput. 2013 Aug 13;9(8):3843-3847
pubmed: 23956701
Nat Commun. 2018 Oct 1;9(1):4019
pubmed: 30275503
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):14593-8
pubmed: 26553992
Pflugers Arch. 2019 May;471(5):701-717
pubmed: 30767072
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Cell Rep. 2016 Dec 13;17(11):2857-2864
pubmed: 27974200
Traffic. 2016 Aug;17(8):839-59
pubmed: 26929436
Biophys J. 2020 Aug 18;119(4):821-830
pubmed: 32730789
J Biol Chem. 2018 Jun 8;293(23):9017-9029
pubmed: 29666183
Nat Commun. 2017 Aug 4;8(1):190
pubmed: 28775348
Structure. 2013 Oct 8;21(10):1735-42
pubmed: 24035711
Biology (Basel). 2021 Nov 23;10(12):
pubmed: 34943138
Biophys J. 2016 Jun 21;110(12):2568-2576
pubmed: 27332116
Faraday Discuss. 2022 Nov 8;240(0):184-195
pubmed: 35943157
Arch Biochem Biophys. 2021 Mar 15;699:108733
pubmed: 33388313
Clin Transl Sci. 2008 May;1(1):21-6
pubmed: 19412328
J Am Chem Soc. 2015 Mar 4;137(8):3031-40
pubmed: 25646698
Nat Struct Biol. 2003 Oct;10(10):826-30
pubmed: 14502270
J Chem Theory Comput. 2015 Aug 11;11(8):3584-3595
pubmed: 26300708
Genet Med. 2017 Feb;19(2):192-203
pubmed: 27532257
Cytoskeleton (Hoboken). 2021 May;78(5):185-198
pubmed: 34331410
Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6653-8
pubmed: 9618467
Science. 2016 Feb 5;351(6273):617-21
pubmed: 26912705
Nature. 2016 Jun 30;534(7609):724-8
pubmed: 27324845
Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11502-11507
pubmed: 31110001
Nat Commun. 2017 Jan 09;8:13969
pubmed: 28067235
Science. 2011 Mar 18;331(6023):1439-43
pubmed: 21415352
J Biol Chem. 2020 Dec 18;295(51):17383-17397
pubmed: 33453985
Biopolymers. 2016 Aug;105(8):483-91
pubmed: 27061920
Chem Rev. 2020 Jan 8;120(1):5-35
pubmed: 31689091
Nat Commun. 2022 Aug 5;13(1):4575
pubmed: 35931685
Trends Biochem Sci. 2016 Dec;41(12):989-997
pubmed: 27717739
J Mol Biol. 1999 Jul 16;290(3):797-809
pubmed: 10395830
Bioinformatics. 2022 Mar 28;38(7):1881-1887
pubmed: 35099504
JACC Basic Transl Sci. 2016 Dec;1(7):666-679
pubmed: 28553667
Biochemistry. 2015 Mar 17;54(10):1963-75
pubmed: 25680381
Structure. 2021 Jan 7;29(1):50-60.e4
pubmed: 33065066
Dev Cell. 2015 May 26;33(4):401-12
pubmed: 25936506
J Thorac Cardiovasc Surg. 1999 Aug;118(2):375-82
pubmed: 10425017
Eur J Heart Fail. 2011 Nov;13(11):1185-92
pubmed: 21750094
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1292-1297
pubmed: 29358376
Cold Spring Harb Perspect Biol. 2018 May 1;10(5):
pubmed: 29716949
Elife. 2020 May 29;9:
pubmed: 32479265
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7260-7265
pubmed: 28652374
Nat Methods. 2020 Jul;17(7):665-680
pubmed: 32483333
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5001-5
pubmed: 20194770