The role of macrophages in non-small cell lung cancer and advancements in 3D co-cultures.


Journal

eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614

Informations de publication

Date de publication:
21 02 2023
Historique:
received: 02 11 2022
accepted: 09 02 2023
pubmed: 23 2 2023
medline: 25 2 2023
entrez: 22 2 2023
Statut: epublish

Résumé

Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. Traditional therapeutic approaches such as chemotherapy or radiotherapy have provided only a marginal improvement in the treatment of lung carcinomas. Inhibitors targeting specific genetic aberrations present in non-small cell lung cancer (NSCLC), the most common subtype (85%), have improved the prognostic outlook, but due to the complexity of the LC mutational spectrum, only a fraction of patients benefit from these targeted molecular therapies. More recently, the realization that the immune infiltrate surrounding solid tumors can foster tumor-promoting inflammation has led to the development and implementation of anticancer immunotherapies in the clinic. In NSCLC, one of the most abundant leukocyte infiltrates is macrophages. These highly plastic phagocytes, which are part of the cellular repertoire of the innate immunity, can have a pivotal role in early NSCLC establishment, malignant progression, and tumor invasion. Emerging macrophage-targeting therapies have been focused on the re-differentiation of the macrophages toward an antitumorigenic phenotype, depletion of tumor-promoting macrophage subtypes, or combination therapies combining traditional cytotoxic treatments with immunotherapeutic agents. The most extensively used models employed for the exploration of NSCLC biology and therapy have been 2D cell lines and murine models. However, studying cancer immunology requires appropriately complex models. 3D platforms, including organoid models, are quickly advancing powerful tools to study immune cell-epithelial cell interactions within the tumor microenvironment. Co-cultures of immune cells along with NSCLC organoids allow for an in vitro observation of the tumor microenvironment dynamics closely resembling in vivo settings. Ultimately, the implementation of 3D organoid technology into tumor microenvironment-modeling platforms might facilitate the exploration of macrophage-targeted therapies in NSCLC immunotherapeutic research, thus establishing a new frontier in NSCLC treatment.

Identifiants

pubmed: 36809334
doi: 10.7554/eLife.82998
pii: 82998
pmc: PMC9943070
doi:
pii:

Substances chimiques

Antineoplastic Agents 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023, Baláž, Baláž, Balážová et al.

Déclaration de conflit d'intérêts

KB, AD No competing interests declared, HC is inventor on patents, owned by the Royal Netherlands Academy of Sciences and related to organoid research. The relevant International Application Numbers are: PCT/NL2008/050543 (Publication Number WO2009/022907) and PCT/NL2010/000017 (Publication Number WO2010/090513). Furthermore, HC is currently employed by Roche (Basel, Switzerland) as head of Pharma Research and Early Development. His full disclosure: www.uu.nl/staff/JCClevers/Additional

Références

Dis Model Mech. 2019 Jul 29;12(7):
pubmed: 31383635
Oncogene. 2019 Jul;38(29):5792-5804
pubmed: 31243299
Ann Oncol. 2013 Sep;24(9):2371-6
pubmed: 23723294
Immunity. 2016 Mar 15;44(3):439-449
pubmed: 26982352
Nat Commun. 2017 Feb 01;8:14381
pubmed: 28146145
Cell Stem Cell. 2020 Dec 3;27(6):905-919.e10
pubmed: 33142113
Dev Biol. 2021 Jul;475:37-53
pubmed: 33684433
Science. 2022 Apr 29;376(6592):eabi8175
pubmed: 35482859
J Immunother Cancer. 2019 Jul 19;7(1):190
pubmed: 31324218
Cancer Res. 2005 Nov 15;65(22):10280-8
pubmed: 16288016
Nat Rev Clin Oncol. 2013 Mar;10(3):154-68
pubmed: 23358316
Br J Cancer. 2017 Nov 21;117(11):1583-1591
pubmed: 29065107
Cell. 2011 Mar 4;144(5):646-74
pubmed: 21376230
J Clin Oncol. 2012 Jun 10;30(17):2046-54
pubmed: 22547592
Cell Rep. 2017 Oct 10;21(2):508-516
pubmed: 29020635
Cancer Cell. 2009 Aug 4;16(2):91-102
pubmed: 19647220
Cell. 2005 Jun 17;121(6):823-35
pubmed: 15960971
Cells. 2021 Aug 14;10(8):
pubmed: 34440860
J Immunother Cancer. 2021 Aug;9(8):
pubmed: 34462325
Cell Rep. 2020 May 5;31(5):107588
pubmed: 32375033
Immunity. 2020 Jun 16;52(6):957-970
pubmed: 32553181
Biomark Res. 2021 Oct 9;9(1):72
pubmed: 34625124
iScience. 2020 Aug 21;23(8):101411
pubmed: 32771979
Eur Respir J. 2009 Jan;33(1):118-26
pubmed: 19118225
Front Cell Dev Biol. 2020 Mar 18;8:166
pubmed: 32258040
Cell. 2016 Jun 16;165(7):1586-1597
pubmed: 27315476
Science. 2013 Jan 18;339(6117):286-91
pubmed: 23329041
Nat Rev Drug Discov. 2018 Dec;17(12):887-904
pubmed: 30361552
Cancer Microenviron. 2016 Apr;9(1):1-11
pubmed: 26319408
Sci Rep. 2017 Mar 27;7:45270
pubmed: 28345602
Front Oncol. 2020 Mar 11;10:324
pubmed: 32219066
Cancer Cell. 2015 Apr 13;27(4):462-72
pubmed: 25858805
Cell Stem Cell. 2020 Dec 3;27(6):890-904.e8
pubmed: 33128895
Nature. 2007 Aug 16;448(7155):807-10
pubmed: 17676035
Am J Physiol Lung Cell Mol Physiol. 2011 Jan;300(1):L25-31
pubmed: 20971803
Clin Transl Immunology. 2020 Dec 20;9(12):e1222
pubmed: 33363732
EMBO J. 2019 Feb 15;38(4):
pubmed: 30643021
Drug Discov Today. 2019 Feb;24(2):517-525
pubmed: 30312743
Nat Immunol. 2021 Sep;22(9):1078-1079
pubmed: 34354280
Cancers (Basel). 2021 Sep 28;13(19):
pubmed: 34638316
J Exp Med. 1992 Jul 1;176(1):287-92
pubmed: 1613462
Front Immunol. 2020 Oct 15;11:583042
pubmed: 33178214
Nat Biotechnol. 2023 Jan;41(1):60-69
pubmed: 35879361
Transl Lung Cancer Res. 2020 Oct;9(5):2199-2213
pubmed: 33209644
Exp Ther Med. 2019 Dec;18(6):4490-4498
pubmed: 31777551
Int J Cancer. 2021 Apr 5;:
pubmed: 33818764
EMBO J. 2020 Nov 2;39(21):e103476
pubmed: 32985719
Oncol Lett. 2019 Aug;18(2):1840-1846
pubmed: 31423252
Stem Cells Transl Med. 2020 Aug;9(8):867-881
pubmed: 32272001
Cancers (Basel). 2020 Dec 28;13(1):
pubmed: 33379189
Clin Cancer Res. 2021 Aug 1;27(15):4397-4409
pubmed: 34083237
Cancer Cell. 2016 Oct 10;30(4):519-532
pubmed: 27728803
Immunity. 2020 Jan 14;52(1):17-35
pubmed: 31940268
Nat Rev Mater. 2021;6(5):402-420
pubmed: 33623712
J Hematol Oncol. 2020 Nov 11;13(1):153
pubmed: 33176869
Nat Immunol. 2021 Feb;22(2):111-117
pubmed: 33495644
PLoS One. 2012;7(7):e40058
pubmed: 22792213
Nat Commun. 2022 Jul 1;13(1):3811
pubmed: 35778404
Cancer Cell. 2013 Apr 15;23(4):527-40
pubmed: 23597566
Clin Cancer Res. 2020 Mar 1;26(5):1162-1174
pubmed: 31694835
Oncology. 2010;78(5-6):289-301
pubmed: 20699622
Front Immunol. 2015 May 26;6:263
pubmed: 26074923
J Exp Med. 2018 Oct 1;215(10):2536-2553
pubmed: 30201786
J Thorac Oncol. 2021 Jun;16(6):922-932
pubmed: 33581342
J Natl Compr Canc Netw. 2010 Jul;8(7):740-801
pubmed: 20679538
J Carcinog. 2013 Mar 16;12:6
pubmed: 23599688
Front Oncol. 2020 Nov 11;10:585284
pubmed: 33262947
Front Oncol. 2021 Jan 05;10:615534
pubmed: 33469516
Cell. 2018 Sep 6;174(6):1586-1598.e12
pubmed: 30100188
Cancer Res. 2021 Jun 15;81(12):3149-3155
pubmed: 33687948
J Thorac Oncol. 2022 Oct;17(10):1178-1191
pubmed: 35798240
Mol Cancer. 2020 Sep 11;19(1):141
pubmed: 32917214
Nature. 2020 Feb;578(7794):266-272
pubmed: 31996850
Genes Dev. 2007 Feb 15;21(4):379-84
pubmed: 17299132
Transl Lung Cancer Res. 2021 Apr;10(4):1889-1916
pubmed: 34012800
Clin Transl Immunology. 2020 May 05;9(5):e1131
pubmed: 32377340
J Transl Med. 2020 Nov 23;18(1):443
pubmed: 33228719
Nature. 2015 May 7;521(7550):43-7
pubmed: 25924068
Am J Respir Crit Care Med. 2016 Jan 15;193(2):116-30
pubmed: 26583808
Nat Rev Mol Cell Biol. 2014 Oct;15(10):647-64
pubmed: 25237826
Am J Physiol Lung Cell Mol Physiol. 2020 May 1;318(5):L1056-L1062
pubmed: 32233789
Oncotarget. 2017 Sep 16;8(59):99801-99815
pubmed: 29245941
Genes Dev. 2022 Aug 1;36(15-16):936-949
pubmed: 36175034
PLoS One. 2015 Feb 23;10(2):e0118210
pubmed: 25706985
Immunity. 2014 Jul 17;41(1):14-20
pubmed: 25035950
N Engl J Med. 1988 Sep 1;319(9):525-32
pubmed: 2841597
EBioMedicine. 2022 Feb;76:103873
pubmed: 35152151
Elife. 2015 Jul 13;4:e07847
pubmed: 26167653
Open Biol. 2021 Jan;11(1):200247
pubmed: 33435818
Development. 2017 Mar 15;144(6):986-997
pubmed: 28292845
J Immunol. 2000 Jun 15;164(12):6166-73
pubmed: 10843666
Mol Cancer Res. 2008 Mar;6(3):364-71
pubmed: 18337446
Sci Rep. 2022 May 10;12(1):7673
pubmed: 35538146
Cell Death Dis. 2019 May 16;10(6):377
pubmed: 31097690
Front Immunol. 2019 Sep 25;10:2215
pubmed: 31611871
Trends Immunol. 2020 Aug;41(8):652-664
pubmed: 32654925
Cancer Cell. 2014 May 12;25(5):590-604
pubmed: 24794706
Science. 2015 Apr 3;348(6230):69-74
pubmed: 25838375
J Thorac Oncol. 2010 Dec;5(12):2024-36
pubmed: 21155185
STAR Protoc. 2022 Jun 10;3(2):101447
pubmed: 35712012
J Oncol Pharm Pract. 2016 Jun;22(3):461-76
pubmed: 25855240
Cell Death Discov. 2018 Jun 7;4:63
pubmed: 29900010
Lancet Oncol. 2016 Jul;17(7):984-993
pubmed: 27283860
J Clin Invest. 2016 Jul 1;126(7):2610-20
pubmed: 27294525
Transl Lung Cancer Res. 2018 Dec;7(6):647-660
pubmed: 30505709
Nature. 2013 Aug 22;500(7463):415-21
pubmed: 23945592
Cancer Manag Res. 2019 Jul 04;11:6125-6138
pubmed: 31308749
Front Oncol. 2021 Aug 31;11:739191
pubmed: 34532293
J Intern Med. 2021 May;289(5):629-635
pubmed: 33340175
Cell Immunol. 2018 Aug;330:91-96
pubmed: 29458975
Lung Cancer Int. 2014;2014:721087
pubmed: 26316944
Genes Dev. 2001 Dec 15;15(24):3243-8
pubmed: 11751630
Nat Rev Immunol. 2020 May;20(5):279-293
pubmed: 31853049
J Natl Compr Canc Netw. 2017 Apr;15(4):504-535
pubmed: 28404761
Nature. 2021 Jul;595(7868):578-584
pubmed: 34135508
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2796-801
pubmed: 21825174
Science. 2019 Mar 15;363(6432):
pubmed: 30872492
J Immunol. 2021 Sep 15;207(6):1683-1693
pubmed: 34400525
PLoS One. 2015 Jun 08;10(6):e0127948
pubmed: 26053043
EMBO J. 2019 Jun 17;38(12):
pubmed: 31028085
Nature. 2018 Aug;560(7718):325-330
pubmed: 30089904
Sci Rep. 2021 Jul 29;11(1):15455
pubmed: 34326381
Cell. 2018 Dec 13;175(7):1972-1988.e16
pubmed: 30550791
Nat Commun. 2019 Sep 5;10(1):3991
pubmed: 31488816
J Hematol Oncol. 2020 Jun 1;13(1):62
pubmed: 32487125
Genes Dev. 2006 Jun 1;20(11):1496-510
pubmed: 16705038
Appl In Vitro Toxicol. 2018 Jun 1;4(2):91-106
pubmed: 32953944
Lancet Oncol. 2015 Mar;16(3):257-65
pubmed: 25704439
Cell Stem Cell. 2020 Oct 1;27(4):663-678.e8
pubmed: 32891189
Science. 2010 Jun 25;328(5986):1662-8
pubmed: 20576885
Nat Med. 2015 Mar;21(3):256-62
pubmed: 25706875
Oncogene. 2001 Oct 4;20(45):6551-8
pubmed: 11641780
Cell Rep. 2014 Jul 10;8(1):40-9
pubmed: 24953650
BMC Immunol. 2018 Jan 24;19(1):3
pubmed: 29361917
Front Immunol. 2019 Jul 31;10:1799
pubmed: 31417566

Auteurs

Katarína Balážová (K)

Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Centre Utrecht, Utrecht, Netherlands.
Oncode Institute, Hubrecht Institute-KNAW, Utrecht, Netherlands.

Hans Clevers (H)

Roche Pharma Research and early Development, Basel, Switzerland.

Antonella F M Dost (AFM)

Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Centre Utrecht, Utrecht, Netherlands.
Oncode Institute, Hubrecht Institute-KNAW, Utrecht, Netherlands.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Humans Immune Checkpoint Inhibitors Lung Neoplasms Prognosis Inflammation

Classifications MeSH