How to select the lowest instrumented vertebra in NF-1 non-dystrophic scoliosis.


Journal

European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
ISSN: 1432-0932
Titre abrégé: Eur Spine J
Pays: Germany
ID NLM: 9301980

Informations de publication

Date de publication:
04 2023
Historique:
received: 04 05 2022
accepted: 09 02 2023
revised: 01 02 2023
medline: 11 4 2023
pubmed: 23 2 2023
entrez: 22 2 2023
Statut: ppublish

Résumé

To investigate lowest instrumented vertebra (LIV) selection strategy for neurofibromatosis type 1 (NF-1) non-dystrophic scoliosis. Consecutive eligible subjects with NF-1 non-dystrophic scoliosis were included. All patients were followed up at least for 24 months. Enrolled patients with LIV in stable vertebra were divided into stable vertebra group (SV group), and the other patients with LIV above the stable vertebra were divided into above stable vertebra group (ASV group). Demographic data, operative data, preoperative and postoperative radiographic data, and clinical outcome were collected and analyzed. There were 14 patients in SV group (ten males and four females, mean age 13.9 ± 4.1 years) and 14 patients in ASV group (nine males and five females, mean age 12.9 ± 3.5 years). The mean follow-up period was 31.7 ± 17.4 months for patients in SV group and 33.6 ± 17.4 months for patients in ASV group, respectively. No significant differences were found in demographic data between two groups. The coronal Cobb angle, C7-CSVL, AVT, LIVDA, LIV tilt and SRS-22 questionnaire outcome significantly improved at the final follow-up in both groups. However, significantly higher loss of correction rate and increasement of LIVDA were found in ASV group. Two patients (14.3%) in ASV group but none in SV group suffered adding-on phenomenon. Although patients in both SV and ASV groups obtained improved therapeutic efficacy at final follow-up, the radiographic and clinical outcome seemed more likely to deteriorate in ASV group after surgery. The stable vertebra should be recommended as LIV for NF-1 non-dystrophic scoliosis.

Identifiants

pubmed: 36809342
doi: 10.1007/s00586-023-07600-z
pii: 10.1007/s00586-023-07600-z
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1153-1160

Subventions

Organisme : The Medical-engineering Cross Fund of Rising Star Plan in Shanghai Jiao Tong University
ID : YG2021QN42
Organisme : National Natural Science Foundation of China
ID : 82072519

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Tamura R (2021) Current understanding of neurofibromatosis type 1, 2, and schwannomatosis. Int J Mol Sci. https://doi.org/10.3390/ijms22115850
doi: 10.3390/ijms22115850 pubmed: 35008728 pmcid: 8745386
Yao Z, Li H, Zhang X, Li C, Qi X (2018) Incidence and risk factors for instrumentation-related complications after scoliosis surgery in pediatric patients with NF-1. Spine 43:1719–1724. https://doi.org/10.1097/BRS.0000000000002720
doi: 10.1097/BRS.0000000000002720 pubmed: 29762338
Vitale MG, Guha A, Skaggs DL (2002) Orthopaedic manifestations of neurofibromatosis in children: an update. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-200208000-00013
doi: 10.1097/00003086-200208000-00013 pubmed: 12151887
Toro G, Santoro C, Ambrosio D, Landi G, Scilipoti M, Moretti A, Paoletta M, Liguori S, Schiavone Panni A, Picariello S, Iolascon G (2021) Natural history of scoliosis in children with NF1: an observation study. Healthcare. https://doi.org/10.3390/healthcare9070881
doi: 10.3390/healthcare9070881 pubmed: 34356257 pmcid: 8303287
Park BJ, Hyun SJ, Wui SH, Jung JM, Kim KJ, Jahng TA (2020) Surgical outcomes and complications following all posterior approach for spinal deformity associated with neurofibromatosis type-1. J Korean Neurosurg Soc 63:738–746. https://doi.org/10.3340/jkns.2019.0218
doi: 10.3340/jkns.2019.0218 pubmed: 32512989 pmcid: 7671774
Shao X, Sui W, Deng Y, Yang J, Chen J, Yang J (2022) How to select the lowest instrumented vertebra in Lenke 5/6 adolescent idiopathic scoliosis patients with derotation technique. Eur Spine J 31:996–1005. https://doi.org/10.1007/s00586-021-07040-7
doi: 10.1007/s00586-021-07040-7 pubmed: 34743244
Kim HW, Weinstein SL (1997) Spine update. The management of scoliosis in neurofibromatosis. Spine 22:2770–2776. https://doi.org/10.1097/00007632-199712010-00014
doi: 10.1097/00007632-199712010-00014 pubmed: 9431613
Lyu Q, Zhou C, Song Y, Liu L, Wang L, Zhou Z (2017) Does spinal deformity correction of non-dystrophic scoliosis in neurofibromatosis type I with one-stage posterior pedicle screw technique produce outcomes similar to adolescent idiopathic scoliosis? Spine J 17:1850–1858. https://doi.org/10.1016/j.spinee.2017.06.011
doi: 10.1016/j.spinee.2017.06.011 pubmed: 28645674
Kurucan E, Bernstein DN, Thirukumaran C, Jain A, Menga EN, Rubery PT, Mesfin A (2018) National trends in spinal fusion surgery for neurofibromatosis. Spine Deform 6:712–718. https://doi.org/10.1016/j.jspd.2018.03.012
doi: 10.1016/j.jspd.2018.03.012 pubmed: 30348349
Sun Z, Qiu G, Zhao Y, Wang Y, Zhang J, Shen J (2014) Lowest instrumented vertebrae selection for selective posterior fusion of moderate thoracolumbar/lumbar idiopathic scoliosis: lower-end vertebra or lower-end vertebra+1? Eur Spine J 23:1251–1257. https://doi.org/10.1007/s00586-014-3276-0
doi: 10.1007/s00586-014-3276-0 pubmed: 24664427
Rose PS, Lenke LG (2007) Classification of operative adolescent idiopathic scoliosis: treatment guidelines. Orthop Clin North Am 38:521–529. https://doi.org/10.1016/j.ocl.2007.06.001
doi: 10.1016/j.ocl.2007.06.001 pubmed: 17945131
Zhuang Q, Zhang J, Wang S, Yang Y, Lin G (2021) How to select the lowest instrumented vertebra in Lenke type 5 adolescent idiopathic scoliosis patients? Spine J 21:141–149. https://doi.org/10.1016/j.spinee.2020.08.006
doi: 10.1016/j.spinee.2020.08.006 pubmed: 32805433
Shufflebarger HL (1989) Cotrel-Dubousset instrumentation in neurofibromatosis spinal problems. Clin Orthop Relat Res 24–28
Crawford AH (1986) Neurofibromatosis in children. Acta Orthop Scand Suppl 218:1–60
pubmed: 3083645
Yang N, Luo M, Zhao S, Wang W, Xia L (2020) Morphological differences between the pedicles in nondystrophic scoliosis secondary to neurofibromatosis type 1 and those in adolescent idiopathic scoliosis. World Neurosurg 144:e9–e14. https://doi.org/10.1016/j.wneu.2020.06.036
doi: 10.1016/j.wneu.2020.06.036 pubmed: 32540291
Tsirikos AI, Saifuddin A, Noordeen MH (2005) Spinal deformity in neurofibromatosis type-1: diagnosis and treatment. Eur Spine J 14:427–439. https://doi.org/10.1007/s00586-004-0829-7
doi: 10.1007/s00586-004-0829-7 pubmed: 15712001 pmcid: 3454658
Crawford AH (1989) Pitfalls of spinal deformities associated with neurofibromatosis in children. Clin Orthop Relat Res 29–42
Durrani AA, Crawford AH, Chouhdry SN, Saifuddin A, Morley TR (2000) Modulation of spinal deformities in patients with neurofibromatosis type 1. Spine 25:69–75. https://doi.org/10.1097/00007632-200001010-00013
doi: 10.1097/00007632-200001010-00013 pubmed: 10647163
Jett K, Friedman JM (2010) Clinical and genetic aspects of neurofibromatosis 1. Genet Med 12:1–11. https://doi.org/10.1097/GIM.0b013e3181bf15e3
doi: 10.1097/GIM.0b013e3181bf15e3 pubmed: 20027112
Lykissas MG, Schorry EK, Crawford AH, Gaines S, Rieley M, Jain VV (2013) Does the presence of dystrophic features in patients with type 1 neurofibromatosis and spinal deformities increase the risk of surgery? Spine 38:1595–1601. https://doi.org/10.1097/BRS.0b013e31829a7779
doi: 10.1097/BRS.0b013e31829a7779 pubmed: 23680833
Wang Z, Liu Y (2010) Research update and recent developments in the management of scoliosis in neurofibromatosis type 1. Orthopedics 33:335–341. https://doi.org/10.3928/01477447-20100329-20
doi: 10.3928/01477447-20100329-20 pubmed: 20507037
Crawford AH, Parikh S, Schorry EK, Von Stein D (2007) The immature spine in type-1 neurofibromatosis. J Bone Jt Surg Am 89(Suppl 1):123–142. https://doi.org/10.2106/JBJS.F.00836
doi: 10.2106/JBJS.F.00836
Panjabi MM, Takata K, Goel V, Federico D, Oxland T, Duranceau J, Krag M (1991) Thoracic human vertebrae. Quantitative three-dimensional anatomy. Spine 16:888–901. https://doi.org/10.1097/00007632-199108000-00006
doi: 10.1097/00007632-199108000-00006 pubmed: 1948374
Liu Z, Qiu Y, Li Y, Zhao ZH, Wang B, Zhu F, Yu Y, Sun X, Zhu ZZ (2017) Clinical application of three-dimensional O-arm navigation system in treating patients with dystrophic scoliosis secondary to neurofibromatosis type I. Zhonghua Wai Ke Za Zhi 55:186–191. https://doi.org/10.3760/cma.j.issn.0529-5815.2017.03.005
doi: 10.3760/cma.j.issn.0529-5815.2017.03.005 pubmed: 28241719
Wang Z, Fu C, Leng J, Qu Z, Xu F, Liu Y (2015) Treatment of dystrophic scoliosis in neurofibromatosis Type 1 with one-stage posterior pedicle screw technique. Spine J 15:587–595. https://doi.org/10.1016/j.spinee.2014.10.014
doi: 10.1016/j.spinee.2014.10.014 pubmed: 25452011
Deng A, Zhang HQ, Tang MX, Liu SH, Wang YX, Gao QL (2017) Posterior-only surgical correction of dystrophic scoliosis in 31 patients with neurofibromatosis Type 1 using the multiple anchor point method. J Neurosurg Pediatr 19:96–101. https://doi.org/10.3171/2016.7.PEDS16125
doi: 10.3171/2016.7.PEDS16125 pubmed: 27739946
Marrache M, Suresh KV, Miller DJ, Hwang S, Schorry EK, Rios JJ, Sponseller PD (2021) Early-onset spinal deformity in neurofibromatosis type 1: natural history, treatment, and imaging surveillance. JBJS Rev. https://doi.org/10.2106/JBJS.RVW.20.00285
doi: 10.2106/JBJS.RVW.20.00285 pubmed: 34297709
Hu Z, Liu Z, Qiu Y, Xu L, Yan H, Zhu Z (2016) Morphological differences in the vertebrae of scoliosis secondary to neurofibromatosis type 1 with and without paraspinal neurofibromas. Spine 41:598–602. https://doi.org/10.1097/BRS.0000000000001455
doi: 10.1097/BRS.0000000000001455 pubmed: 26780616

Auteurs

Xiexiang Shao (X)

Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University Shanghai Jiao Tong University, Shanghai, 200092, China.

Tianyuan Zhang (T)

Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University Shanghai Jiao Tong University, Shanghai, 200092, China.

Jingfan Yang (J)

Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University Shanghai Jiao Tong University, Shanghai, 200092, China.

Yaolong Deng (Y)

Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University Shanghai Jiao Tong University, Shanghai, 200092, China.

Zifang Huang (Z)

Department of Spine Surgery, Sun Yat-Sen University Third Affiliated Hospital, Guangzhou, 510630, China.

Junlin Yang (J)

Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University Shanghai Jiao Tong University, Shanghai, 200092, China. yangjunlin@xinhuamed.com.cn.

Wenyuan Sui (W)

Spine Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University Shanghai Jiao Tong University, Shanghai, 200092, China. suiwenyuan@hotmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH