Polygenic risk score for attention-deficit/hyperactivity disorder and brain functional networks segregation in a community-based sample.
ADHD
DMN
GWAS
network segregation
networks
polygenic risk score
rs-fMRI
Journal
Genes, brain, and behavior
ISSN: 1601-183X
Titre abrégé: Genes Brain Behav
Pays: England
ID NLM: 101129617
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
revised:
29
11
2022
received:
22
09
2022
accepted:
20
01
2023
medline:
4
4
2023
pubmed:
23
2
2023
entrez:
22
2
2023
Statut:
ppublish
Résumé
Neuroimaging studies suggest that brain development mechanisms might explain at least some behavioural and cognitive attention-deficit/hyperactivity disorder (ADHD) symptoms. However, the putative mechanisms by which genetic susceptibility factors influence clinical features via alterations of brain development remain largely unknown. Here, we set out to integrate genomics and connectomics tools by investigating the associations between an ADHD polygenic risk score (ADHD-PRS) and functional segregation of large-scale brain networks. With this aim, ADHD symptoms score, genetic and rs-fMRI (resting-state functional magnetic resonance image) data obtained in a longitudinal community-based cohort of 227 children and adolescents were analysed. A follow-up was conducted approximately 3 years after the baseline, with rs-fMRI scanning and ADHD likelihood assessment in both stages. We hypothesised a negative correlation between probable ADHD and the segregation of networks involved in executive functions, and a positive correlation with the default-mode network (DMN). Our findings suggest that ADHD-PRS is correlated with ADHD at baseline, but not at follow-up. Despite not surviving for multiple comparison correction, we found significant correlations between ADHD-PRS and segregation of cingulo-opercular networks and DMN at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation. These directions of associations corroborate the proposed counter-balanced role of attentional networks and DMN in attentional processes. However, the association between ADHD-PRS and brain networks functional segregation was not found at follow-up. Our results provide evidence for specific influences of genetic factors on development of attentional networks and DMN. We found significant correlations between polygenic risk score for ADHD (ADHD-PRS) and segregation of cingulo-opercular networks and default-mode network (DMN) at baseline. ADHD-PRS was negatively correlated with the segregation level of cingulo-opercular networks but positively correlated with the DMN segregation.
Identifiants
pubmed: 36811275
doi: 10.1111/gbb.12838
pmc: PMC10067387
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e12838Informations de copyright
© 2023 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.
Références
Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8
pubmed: 17576922
J Neurosci Methods. 2008 Mar 30;169(1):249-54
pubmed: 18190970
Brain Imaging Behav. 2014 Dec;8(4):558-69
pubmed: 24338247
Psychol Med. 2006 Feb;36(2):159-65
pubmed: 16420712
Genes Brain Behav. 2023 Apr;22(2):e12838
pubmed: 36811275
Curr Neuropharmacol. 2022 Aug 3;20(9):1642-1650
pubmed: 34544344
J Atten Disord. 2020 Oct;24(12):1701-1710
pubmed: 27585832
Neuroimage Clin. 2019;21:101600
pubmed: 30472167
Neuroimage. 2012 Feb 1;59(3):2142-54
pubmed: 22019881
Biol Psychiatry. 2005 Jun 1;57(11):1313-23
pubmed: 15950004
Biol Psychiatry. 2019 Oct 15;86(8):599-607
pubmed: 31003786
J Child Psychol Psychiatry. 2000 Jul;41(5):645-55
pubmed: 10946756
J Child Psychol Psychiatry. 2012 Jan;53(1):73-80
pubmed: 21923806
Neuroimage. 2013 Oct 15;80:53-61
pubmed: 23528922
J Consult Psychol. 1967 Oct;31(5):499-506
pubmed: 6075979
Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14259-64
pubmed: 25225387
Neuron. 2006 Jun 1;50(5):799-812
pubmed: 16731517
Am J Psychiatry. 2017 Nov 1;174(11):1112-1119
pubmed: 28946760
Bioinformatics. 2015 May 1;31(9):1466-8
pubmed: 25550326
Am J Psychiatry. 2013 Aug;170(8):909-16
pubmed: 23599091
J Atten Disord. 2019 May;23(7):655-664
pubmed: 28665177
Transl Psychiatry. 2020 Jan 21;10(1):8
pubmed: 32066674
Basic Clin Neurosci. 2017 Jul-Aug;8(4):267-278
pubmed: 29158877
Int J Methods Psychiatr Res. 2015 Mar;24(1):58-73
pubmed: 25469819
Lancet Psychiatry. 2017 Apr;4(4):310-319
pubmed: 28219628
J Am Acad Child Adolesc Psychiatry. 2014 Jul;53(7):761-70.e26
pubmed: 24954825
Neuroimage. 2013 Nov 15;82:208-25
pubmed: 23747457
Curr Opin Neurobiol. 2013 Apr;23(2):162-71
pubmed: 23294553
J Atten Disord. 2015 Nov;19(11):931-43
pubmed: 24097847
Nat Genet. 2019 Jan;51(1):63-75
pubmed: 30478444
Transl Psychiatry. 2020 Jun 19;10(1):199
pubmed: 32561708
Dev Neuropsychol. 2013;38(4):211-25
pubmed: 23682662
Transl Psychiatry. 2020 Nov 12;10(1):398
pubmed: 33184255
Netw Neurosci. 2018 Jun 01;2(2):200-217
pubmed: 30215033
Netw Neurosci. 2019 Apr 01;3(2):567-588
pubmed: 31089485
J Am Acad Child Adolesc Psychiatry. 2014 Oct;53(10):1123-9.e6
pubmed: 25245356
Brain Connect. 2012;2(3):125-41
pubmed: 22642651
Neuroimage. 2021 Apr 1;229:117753
pubmed: 33454408
Hum Genet. 2009 Jul;126(1):13-50
pubmed: 19384554
Cereb Cortex. 2016 Jan;26(1):288-303
pubmed: 25316338
Brain Connect. 2011;1(2):147-57
pubmed: 22076305
Biol Psychiatry. 2008 Feb 1;63(3):332-7
pubmed: 17888409
Mol Psychiatry. 2017 Feb;22(2):250-256
pubmed: 27217153
Mol Psychiatry. 2020 Aug;25(8):1809-1821
pubmed: 29934545
PLoS One. 2012;7(9):e45671
pubmed: 23049834
Neuron. 2014 Sep 17;83(6):1335-53
pubmed: 25233316
Trends Neurosci. 2017 Aug;40(8):494-506
pubmed: 28684174
Mol Psychiatry. 2022 May;27(5):2485-2491
pubmed: 35256746
Cereb Cortex. 2015 Sep;25(9):2763-73
pubmed: 24770711
Neuroimage. 2017 Oct 15;160:15-31
pubmed: 28161313
Nat Rev Dis Primers. 2015 Aug 06;1:15020
pubmed: 27189265
Transl Psychiatry. 2019 Oct 3;9(1):242
pubmed: 31582733