Non-covalent ligand-oxide interaction promotes oxygen evolution.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
22 Feb 2023
22 Feb 2023
Historique:
received:
05
05
2022
accepted:
14
02
2023
entrez:
22
2
2023
pubmed:
23
2
2023
medline:
23
2
2023
Statut:
epublish
Résumé
Strategies to generate high-valence metal species capable of oxidizing water often employ composition and coordination tuning of oxide-based catalysts, where strong covalent interactions with metal sites are crucial. However, it remains unexplored whether a relatively weak "non-bonding" interaction between ligands and oxides can mediate the electronic states of metal sites in oxides. Here we present an unusual non-covalent phenanthroline-CoO
Identifiants
pubmed: 36813796
doi: 10.1038/s41467-023-36718-3
pii: 10.1038/s41467-023-36718-3
pmc: PMC9947139
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
997Subventions
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 22072013
Informations de copyright
© 2023. The Author(s).
Références
Sci Rep. 2015 Jul 16;5:12167
pubmed: 26178185
J Am Chem Soc. 2015 Mar 18;137(10):3638-48
pubmed: 25700234
Nature. 2008 Jun 5;453(7196):763-6
pubmed: 18528391
Science. 2013 Apr 5;340(6128):60-3
pubmed: 23539180
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):3855-3860
pubmed: 28348217
Nat Commun. 2022 Mar 10;13(1):1243
pubmed: 35273163
Nat Mater. 2016 Dec 20;16(1):70-81
pubmed: 27994241
Nat Chem. 2012 May 06;4(6):498-502
pubmed: 22614386
J Am Chem Soc. 2013 Nov 13;135(45):16977-87
pubmed: 24171402
Nat Commun. 2017 Mar 24;8:14839
pubmed: 28337985
Phys Rev Lett. 2019 Jan 11;122(1):016805
pubmed: 31012645
Angew Chem Int Ed Engl. 2021 Jun 21;60(26):14446-14457
pubmed: 33844879
Nat Chem. 2021 Jun;13(6):523-529
pubmed: 33767362
Science. 2008 Aug 22;321(5892):1072-5
pubmed: 18669820
Nat Chem. 2018 Feb;10(2):149-154
pubmed: 29359759
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15579-84
pubmed: 24019473
J Phys Chem Lett. 2015 Sep 17;6(18):3737-42
pubmed: 26722749
Science. 2014 Aug 15;345(6198):804-8
pubmed: 25124437
Nat Mater. 2016 Feb;15(2):121-6
pubmed: 26796721
J Am Chem Soc. 2010 May 26;132(20):6882-3
pubmed: 20433197
Nat Commun. 2019 Nov 15;10(1):5208
pubmed: 31729380
J Am Chem Soc. 2022 May 4;144(17):7622-7633
pubmed: 35442661
Science. 2010 Apr 16;328(5976):342-5
pubmed: 20223949
J Am Chem Soc. 2019 Apr 3;141(13):5231-5240
pubmed: 30860837
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1486-1491
pubmed: 28137835
Nat Commun. 2020 Aug 13;11(1):4066
pubmed: 32792524
Nat Mater. 2021 May;20(5):674-682
pubmed: 33432142
Small. 2019 Oct;15(44):e1903847
pubmed: 31512397
J Am Chem Soc. 2016 Jun 15;138(23):7252-5
pubmed: 27232374
Angew Chem Int Ed Engl. 2006 Apr 21;45(17):2778-81
pubmed: 16548024
Nat Commun. 2014 Jun 18;5:4191
pubmed: 24939393
Angew Chem Int Ed Engl. 2018 Sep 24;57(39):12840-12844
pubmed: 30112793
Acc Chem Res. 2018 Nov 20;51(11):2968-2977
pubmed: 30375841
Nat Commun. 2020 May 20;11(1):2522
pubmed: 32433529
J Am Chem Soc. 2020 Jul 8;142(27):11901-11914
pubmed: 32539368
J Am Chem Soc. 2016 Aug 31;138(34):11017-30
pubmed: 27515121
Appl Magn Reson. 2013 Jul;44(7):817-826
pubmed: 23766555
J Synchrotron Radiat. 2005 Jul;12(Pt 4):537-41
pubmed: 15968136
J Am Chem Soc. 2017 Feb 8;139(5):1878-1884
pubmed: 28098444
J Am Chem Soc. 2011 Oct 5;133(39):15444-52
pubmed: 21913664
Nat Commun. 2017 Dec 8;8(1):2022
pubmed: 29222428
Nat Mater. 2017 Sep;16(9):925-931
pubmed: 28714982
Science. 2016 Apr 15;352(6283):333-7
pubmed: 27013427
J Am Chem Soc. 2011 Apr 13;133(14):5587-93
pubmed: 21413705